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ABSTRACT: The surface structure of reinforcing elements within a matrix can produce a 
complex mechanical interaction including mechanical interlocking along the interface.  This 
interaction can be modeled using an interface idealization at a scale in which the details of the 
surface structure are omitted and the actual interface traction is homogenized over a length 
characteristic of the surface structure.  For some applications such as the reinforcement of 
concrete with FRP bars, the reinforcing element can be idealized as being a circular cylinder, and 
the radial elastic interaction can affect the overall behavior, e.g. the “bond response” and failure 
mode of the composite system.  The definition of the radial elastic modulus for the interface of 
the “homogenized model” requires static equivalence of the actual and homogenized tractions 
and equal amounts of strain energy in the domains.  A unit cell approach is taken idealizing the 
traction distribution as periodic, and an analytical solution for the strain energy in the reinforcing 
element is presented.  The analytical expression for the elastic modulus reflects its dependence 
upon the traction distribution, material properties, and bar geometry.  To study the effects of 
these parameters, three bond specimens of an FRP bar in a concrete matrix are examined.  As the 
actual traction distribution becomes more concentrated, the interface of the homogenized model 
becomes more compliant.  With respect to material properties, the radial elastic modulus is 
usually most sensitive to changes in the transverse Young’s modulus of the FRP bar; for light 
weight concrete the modulus is equally sensitive to changes in Young’s modulus of the concrete.  
The elastic moduli are applied to accurately reproduce the effects of a nonuniform traction 
distribution even when the concrete is split longitudinally and snap-back behavior occurs in the 
radial response.  The traction distribution and compliance of the FRP bar have a significant 
effect on the snap-back behavior which indicates the potential for a very sudden failure due to 
concrete cracking. 
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1. INTRODUCTION 

Interface descriptions of the mechanical interaction between two constituent materials of a 
body are common in computational mechanics.   Often the characterization of this interaction 
includes an elastic component, which has different interpretations depending upon the 
application [1] Cox and Yu 1999.  In this study, the elastic component is defined to characterize 
the local elastic response associated with mechanical interlocking between surface structures1, 
which are not explicitly modeled at a larger scale.  Local response has previously been used to 
argue the need for elastic moduli associated with interface models, and elastic deformation of the 
contact zone has been experimentally measured for some applications (see e.g., Goodman et al. 
[2] 1968). 

Recently Cox and Yu [1] (1999) derived an analytical expression for the elastic modulus of an 
interface model characterizing the elastic interaction between a slender axisymmetric reinforcing 
element and a matrix.  For composites having an interphase or imperfect interaction between the 
two phases, most studies on elastic moduli have sought to determine the effective elastic moduli 
of an interphase region of finite thickness (see e.g., [3,4]) or to determine the effective elastic 
moduli of the complete composite (see e.g., [5-10]); however, the study by Cox and Yu [1] 
(1999) was motivated by the need for computational models at a scale in which the 
reinforcement and matrix are modeled as solids, and an interface model is used to characterize 
the progressive failure of the mechanical interaction.  That initial study and the study presented 
in this paper address the radial (normal) component of the elastic interaction, but the approach 
could also be used to examine the increased tangent compliance along a material interface due to 
imperfect interaction. 

Like the earlier study [1] (1999), the research presented in this study may be applicable to 
different composite materials or structures, but the two studies differ in the motivating problem.  
In the previous study, the deformation of the reinforcement was neglected, thus the formulation 
was limited to composites with reinforcing elements (e.g. steel) having a small transverse 
compliance relative to the matrix (e.g. concrete).  In this study, the motivating problem (for 
which the theory is demonstrated) is the mechanical interaction between fiber-reinforced 
polymer (FRP) reinforcing bars and a concrete matrix.  For FRP bars the transverse compliance 
is approximately 20 to 30 times that of steel and approximately 2 to 4 times that of concrete, thus 
the local deformation of both the matrix and reinforcement are now considered.  Similar to steel 
bars, many FRP bars have a fabricated surface structure (often idealized as being periodic) that 
produces a significant mechanical interlocking with the adjacent concrete (after the propagation 
of an interfacial crack).  The mechanical interlocking produces a complicated interface traction 
distribution due to the resulting contact conditions.  The radial component of the traction tends to 
produce significant hoop stress in the adjacent concrete and can fail the concrete in longitudinal 
cracking2 (see e.g., Tepfers [11]1979).  The increased radial compliance of the FRP bars affects 
the mechanical interlocking.  Figure 1 shows the bond stress vs. slip response for a recent pull-
out test of an FRP bar.  This type of “cyclic behavior” has been observed for several bond tests 
of FRP bars (see e.g., [12]).  The spatial period of the response cycles corresponds to the length 
of the periodic surface structure of the bar, reflecting the importance of the mechanical 
interlocking and that there must be significant radial compliance.  The increase in radial 

                                                 
1 Surface structure refers to the deviation of the actual geometry from that of an idealized model.  For example, an 
idealized model might represent a reinforcing element as a circular cylinder.  The surface structure in this case 
would be the portion of the actual reinforcing element that deviates from the cylindrical shape.  The surface 
structure is referred to as being significant if it produces significant mechanical interlocking when relative slip 
occurs along the interface. 
2 Ideal longitudinal cracks occur in a θ-plane assuming a cylindrical coordinate system in which the z-axis is 
aligned with the axis of the bar. 
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compliance has been associated with the elastic properties of the FRP, but the effect of the 
contact conditions has not been examined. 

One motivation for examining the radial compliance is that it can significantly affect the bond 
strength and failure mode for an FRP bar in a concrete matrix (pull-out vs. failure due to 
longitudinal cracking – splitting failure).  For computational “bond models” in which the surface 
structure geometry is explicitly modeled (rib-scale models [13](Cox and Herrmann 1998)) the 
detailed effects of the mechanical interlocking are accounted for directly.  While this scale of 
modeling is useful for understanding the mechanisms that contribute to bond behavior, it is 
impractical for the analysis of structural components.  A larger scale of modeling (bar scale [13] 
(Cox and Herrmann 1998)) amenable to the analysis of structural components represents the 
reinforcement as an cylindrical solid (eliminating the geometric detail of the surface structure) 
and uses an interface idealization to characterize the effects of mechanical interlocking.  This 
type of model was recently used by Guo and Cox [14,15] (1998, 1999) to reproduce the behavior 
of various test specimens.  The model represents the kinematics of the mechanical interlocking 
(i.e., the “wedging effect” of the surface structure) through an inelastic radial dilation of the 
interface which is partially negated by an elastic radial contraction of the interface (representing 
the local elastic deformation).  Unfortunately while the tangent elastic response can be estimated 
from experimental data, experimental data on the radial elastic response is not available.  Thus 
further investigation of the radial elastic modulus associated with the interface is needed. 

This paper focuses on the radial elastic response attributed to an interface idealization when 
the actual traction distribution along the interface is assumed to be axisymmetric and nonuniform 
(but periodic) in the axial direction.  While the actual traction distribution will not generally 
satisfy these assumptions, these idealizations can allow analytical results to be obtained that 
yield significant insight.  Furthermore, the analytical solution can be applied as a first order 
approximation when these assumptions are not strictly true. 

The paper is organized in sections that address the following areas: (2) simplifications that 
lead to the underlying analytical models needed to define the elastic modulus of the interface, (3) 
analytical solution and verification, (4) use of the analytical solution to determine an equivalent 
elastic modulus of the interface idealization and presentation of parameter study results, (5) 
application of the model in predicting longitudinal cracking in a concrete matrix, and (6) 
summary and conclusions. 

2. ANALYTICAL MODEL 

To define an elastic modulus for an interface idealization that incorporates analytical solutions, 
a few simplifications are adopted at both scales (rib-scale and bar-scale).  At both scales the 
interface is idealized as being smooth, eliminating the details of the actual surface structure 
geometry, but not the effects of the mechanical interlocking caused by the geometry.  At the 
smaller scale (rib-scale), the effect of mechanical interlocking is represented by a more 
concentrated interfacial traction distribution.  This differs with a typical computational rib-scale 
model where the geometry is explicitly modeled.  (It was previously found for a steel bond 
specimen that the effect of traction distribution is more significant than the effect of the actual 
geometry [1] (1999).)  For the bar-scale model the actual traction is homogenized over a 
characteristic length, e.g., the length of spatial periodicity of the surface structure.  By definition, 
the actual and homogenized tractions are statically equivalent loads, but their mechanical effects 
differ.  The following analysis will show that the uniform traction produces a stiffer load-
deflection response for the interface than the actual traction distribution does.  To capture the 
added compliance caused by the actual traction distribution, a finite elastic modulus is attributed 
to the interface of the bar-scale model. 

Figures 2(a-d) show θ-sections of the axisymmetric rib- and bar-scale models.  The concrete is 
modeled as a thick-walled cylinder and idealized as being homogeneous, isotropic and linear 
elastic (Young’s modulus Ec and Poisson’s ratio νc).  The FRP cylinder is treated as transversely 
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isotropic and linear elastic with five independent material constants: longitudinal Young’s 
modulus (EL), transverse Young’s modulus (ET) and Poisson’s ratio (νTT), and longitudinal-
transverse shear modulus (µLT) and Poisson’s ratio (νLT). 

Let sr denote the characteristic length associated with the assumed periodic structure (e.g., rib-
spacing) along the longitudinal axis (z-axis).  In Figures 2(a-d) the elastic problems are defined 
for a unit cell of length sr.  The rollers along the edges z=± sr/2 and the radial traction 
distributions (even about the r-axis) produce response symmetries consistent with the unit cell 
assumptions.  For the rib-scale model (Figures 2a,c) the radial traction distribution t is nonzero 
over the contact length Lt, and for the bar-scale model (Figures 2b,d) σ denotes the homogenized 
traction over sr.  The tractions are related through static equivalence as 

σ = 1
sr

t z( )dz
− sr 2

sr 2

∫   (1) 
The interface model for the bar-scale problem has a radial elastic stiffness (denoted as De) that 

relates σ to the relative radial displacement (δn) of initially coincident points on the interface 
(positive in extension).  The radial elastic stiffness of the interface (for brevity, the interface 
stiffness) has dimensions of force per length3.  Alternatively, deformations of the interface are 
often nondimensionalized by characteristic lengths that can be related to the surface structure 
(see e.g., [13,16]); thus some results will be presented in terms of a generalized strain measure 
defined as 

qn=δn/db  (2) 
where db=2ri, the bar diameter.  (The surface structure scales with db for typical FRP bars.)  The 
corresponding radial elastic modulus relating σ and qn is denoted by D .  Thus σ is related to the 
interface stiffness, elastic modulus and kinematic variables by 

ˆ e

σ=Deδn= qˆ D e n  (3a) 
where 

De= /dˆ D e b  (3b) 
The increase in compliance associated with the concentration of the actual interface traction can 
be additively decomposed into parts associated with the concrete (1/ , Figure 2b) and 
reinforcing bar (1/ , Figure 2d); i.e., the interface compliance satisfies 

Dcon
e

Dbar
e

−1
De −1

= Dcon
e + Dbar

e −1
  (4a) 

similarly 
ˆ D e

−1
= ˆ D con

e −1
+ ˆ D bar

e −1
  (4b) 

By Equation (1) the rib- and bar-scale models are equivalent in the Saint-Venant sense.  
Further, we equate the strain energies stored in the elastic bodies of problems (a,c) to those of 
problems (b,d).  We select this equivalence measure because potentially the strain energy can be 
released to drive cracks in the materials.  Since the strain energy stored in an elastic body is 
equal to the work done by external loading, the “energy equivalence” requires 

Wa
t = Wb

σ  Wc
t = Wd

σ  (5a,b) 
twhere  denotes the work done by t in problem (a), and so on.  Solving expressions for the 

elastic modulus from Equations (4) and (5) requires the work done by the tractions upon each of 
the four subdomains (Figure 2) to be obtained analytically.  The next section addresses the 
analytical solutions to these elasticity problems. 

Wa

3. ANALYTICAL SOLUTION 

The solutions associated with the “exterior parts” of the problems (Figures 2a and 2b) were 
previously presented [1].  This section complements the previous work with the solution for a 
transversely isotropic cylindrical bar loaded as depicted in Figure 2c. 
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3.1 Governing Equations and Boundary Conditions 
The governing equations for the axisymmetric problem are as follows.  Equilibrium is 

governed by 
∂σrr

∂r
+

∂σ rz

∂z
+

σrr − σθθ

r
= 0, 

∂σrz

∂r
+

∂σ zz

∂z
+

σrz

r
= 0, (6a,b) 

and σrθ=σθz=0.  The linear strain-displacement relationships are 

εrr =
∂ur

∂r ,
 εθθ =

ur

r , εzz =
∂uz

∂z , 
γ rz =

∂ur

∂z
+

∂uz

∂r ,
 (7a-d) 

and γrθ= θz=0.  The constitutive relationships for linear transversely isotropic elasticity can be 
written as 

γ

σ rr = C11ε rr + C12εθθ + C13ε zz , σθθ = C12εrr + C11εθθ + C13εzz , (8a,b) 
σ zz = C13εrr + C13εθθ + C33εzz , σ rz = C44γ rz , (8c,d) 

where 
C11 = ET (−EL + ETνLT

2 ) Λ , C12 = − ET(ELνTT + ETνLT
2 ) Λ , 

C13 = −ELETνLT (1 +νTT ) Λ , C33 = − EL
2 (1 −νTT

2 ) Λ , C44 = µLT = µTL , 
Λ = 2ETν LT

2 − EL (1 − νTT )[ ](1 + νTT ). 
The solution for an isotropic medium will be included as a special case. 

The periodic boundary conditions are given by 
uz z =± sr 2 = 0 , σrz z =± sr 2 = 0 , (9a,b) 

and the traction boundary conditions on the bar surface are 
σrr r= ri = t , σrz r= ri = 0, (9c,d) 

where t denotes a generic distribution of traction normal to the surface. 

3.2 Solution 
The solution approach will be the same as that previously used for the exterior part of the 

problem [1]Cox and Yu [1999], where the variations of the displacements in the z-direction are 
expressed in terms of the orthonormal trigonometric basis (i.e. a Fourier series approach).  
Another common approach is the stress function method which solves a biharmonic equation for 
the stress function and expresses all the solution variables in terms of this particular function (see 
e.g., [17][1995]).  Pagano ref.? 

The trigonometric functions used as the orthonormal basis in the Fourier series are defined as 

Φcn (z) =

1
sr

,         n = 0

cos(zωn )
sr / 2

,n > 0

 

 
 

 
 

, Φsn(z) =
sin(zω n)

sr / 2 , ωn =
2πn
sr

. (10a-c) 

Due to the symmetry of the problem, the nonzero displacements ur and uz are even and odd 
functions of z, respectively, and thus can be expressed as 

ur r,z( )= vrn (r)
n= 0

∞

∑ Φcn (z) , uz r,z( )= vzn(r )
n=1

∞

∑ Φsn (z) . (11a,b) 

Substituting the above definitions into the strain-displacement and constitutive relationships 
yields the stress components as 

σ rr r, z( ) = σ n
n=0

∞

∑ (r)Φcn (z) , σ rz r, z( ) = τ n
n=1

∞

∑ (r)Φ sn (z), (12a,b) 

where 
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σ 0 r( ) = C11

dvr0

dr
+ C12

vr 0

r ,  (13a) 

σ n r( ) = C11

dvrn

dr
+ C12

vrn

r
+ C13ωn vzn , τ n r( ) = C44

dvzn

dr
− ωn vrn

 
 

 
 . (13b,c) 

Note that the periodic boundary conditions (9a,b) are identically satisfied by Equations (11b, 
12b). 

The coefficient functions are projections of the solutions onto each basis function, e.g., 
vrn (r) = ur r,z( ),Φcn (z) , vzn(r ) = uz r,z( ),Φ sn(z)  (14a,b) 

where a,b = abdz
− sr / 2

sr / 2

∫ .  The equations for deriving the coefficient functions can be obtained by 

projecting the equilibrium equations onto the basis.  Orthogonality of the basis functions yields 
two nontrivial equations 

Φcn ,
∂σrr

∂r
+

∂σ rz

∂z
+

σ rr − σθθ

r
= 0 , Φsn,

∂σ rz

∂r
+

∂σ zz

∂z
+

σ rz

r
= 0 (15a,b) 

The traction boundary conditions (9c,d) are also projected onto the basis 
Φcn ,σ rr r =ri

= Φcn,t =αn, Φ sn,σrz r =ri
= 0, (16a,b) 

where the α’s are the coordinates of t in the Φc basis (i.e., Fourier coefficients of t). 
For the case of n=0, Equation (15a) gives 

d2vr0

dr2 +
1
r

dvr 0

dr
−

vr 0

r2 = 0  (17) 

whose general solution is a linear combination of r and 1/r.  The term 1/r is eliminated due to its 
singularity at r=0.  The solution to vr0 is then written as 

vr 0 (r) = c0 r  (18a) 
where c0 is a constant to be defined.  Substituting vr0 into Equation (13a) gives the following 
solution to σ0(r) 

σ 0 (r) = C11 + C12( c0)  (18b) 
By enforcing the traction boundary condition (16a) for n=0, c0 is readily solved as 

c0=α0 / (C11+C12)  (18c) 
The coefficient functions given by Equations (18a,b) multiplied by Φc0 are the displacement 

and stress solutions corresponding to a uniform traction σ acting over sr.  To later assess the 
relative magnitude of , a measure of the transverse stiffness of the bar subjected to a uniform 
traction ( ) is calculated as 

ˆ D e
ˆ D bar

T

ˆ D bar
T =

σ0 ri( )Φc0

vr0 ri( )Φc0 db

= 2 C11 + C12( )  (19) 

For the case of n>0, Equations (15a,b) lead to the following set of coupled ordinary 
differential equations for vrn and vzn 

C11
d2vrn

dr2 +
dvrn

rdr
−

vrn

r2

 
 
  

 
− ωn

2C44vrn + C13 + C44( )ωn
dvzn

dr
= 0  (20a) 

−ωn C13 + C44( ) dvrn

dr
+

vrn

r
 
 

 
 + C44

d2vzn

dr 2 +
dvzn

rdr
 
 
  

 
−ωn

2C33vzn = 0  (20b) 

Uncoupling Equations (20a,b) gives the following expression for vrn in terms of a third-order 
differential operation on vzn 
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vrn =
C11

ωn
3 C13 + C44( )

d3

dr 3 +
d2

rdr2 −
d

r 2dr
 
 
  

 
−

C11C33 − C13 + C44( )2

ωnC44 C13 + C44( )
d
dr

 

 
 

 

 
 vzn  (21) 

Substituting Equation (21) back into Equation (20b) gives the fourth order homogeneous 
differential equation for vzn 

d 2

dr 2 +
d

rdr
 
 
  

 

2

− p2 + q2( )ω n
2 d2

dr2 +
d

rdr
 
 
  

 
+ p2 q2ωn

4
 

 
 

 

 
 vzn = 0 (22) 

where p2 and q2 satisfy the following relationships 

p2 + q2 =
C11C33 + C44

2 − C13 + C44( )2

C11C44
, p2q2 =

C33

C11
. (23a,b) 

This is equivalent to identifying p2 and q2 as the roots to the quadratic algebraic equation 

⋅( )2 −
C11C33 + C44

2 − C13 + C44( )2

C C44

⋅( ) +
C33

C11

= 0 (23c) 
11

The quantities p2 and q2 are dimensionless functions of the material constants and are treated as 
real and positive for this problem. 

Equation (22) can be rewritten as 
(L- p2ωn

2 ) (L- q2ωn
2 ) vzn =0 (24a) 

where 

L ≡
d2

dr 2 +
d

rdr
 (24b) 

Both of the operators in Equation (24a) are scaled, modified Bessel operators of order 0.  The 
solution of vzn depends on the values of p2 and q2.  In the following two subsections, the cases of 
distinct (p2≠q2) and identical roots (p2=q2) are considered separately. 

3.2.1 Case I: p2≠q2 

For the case of distinct roots, the general solution to Equation (24a) is a linear combination of 
the eigenfunctions of the linear operator L corresponding to the two eigenvalues p2ωn

2  and q2ωn
2 .  

There are four such eigenfunctions, i.e. I0(pωnr), K0(pωnr), I0(qωnr) and K0(qωnr), where I and K 
denote modified Bessel functions of the first and second kinds, respectively.  The terms 
involving K0 are eliminated due to their singularity at r=0, and the solutions to the displacement 
coefficient functions are 

vrn (r) = ηpcpnI1 pωnr( )+ ηqcqnI1 qωnr( ), vzn(r ) = cpnI0 pωnr( )+ cqnI0 qωnr( ) (25a,b) 
where cpn and cqn are constants, and 

ηp =
pC44 − p−1C33

C13 + C44

, ηq =
qC44 − q−1C33

C13 + C44

 (26a,b) 

are nondimensional and related to the material constants.  Substituting Equations (25a,b) into 
Equations (13b,c) gives the following coefficient functions for the stress components 

σ n r( ) = c pnσ c pn
r( ) + cqnσ c qn

r( ), τ n r( ) = c pnτ c pn
r( )+ cqnτ cqn

r( ) (27a,b) 
where 

σc pn
r( )= C11pηp + C13( )ωn I0 pω nr( )+ C12 − C11( )ηpr

−1I1 pω nr( ), (28a) 
−σcqn

r( ) = C11qηq + C13( )ωn I0 qωn r( )+ C12 − C11( )ηq r 1 I1 qω nr( ), (28b) 

τc pn
r( )= p −ηp( )ω nC44I1 pωn r( ), τcqn

r( ) = q −ηq( )ω nC44 I1 qωn r( ) (28c,d) 
Enforcing the traction boundary conditions (16a,b) yields the following system of equations 
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σc pn r=ri
σ cqn r= ri

τc pn r=ri
τ cqn r= ri

 

 
 

 

 
 

cpn

cqn

 
 
 

 
 
 

=
αn

0
 
 
 

 
 
 

 (29) 

from which the solutions for cpn and cqn are given by 
cpn=riαn(ηq-q)Ι1(qωnri)/Bn, cqn=riαn(-ηp+p) Ι1(pωnri)/Bn (30a,b) 

where 
Bn=ωnri(-ηp+p)(C13+C11qηq)Ι0(qωnri)Ι1(pωnri)+ωnri(ηq-q)(C13+C11pηp)Ι0(pωnri)Ι1(qωnri)+ 

 (qηp-pηq)(C11-C12)Ι1(pωnri)Ι1(qωnri) (31) 
has units of Young’s modulus.  With these constants, the solutions for the displacement and 
stress components are complete. 

3.2.2 Case II: p2=q2 
For the case of identical roots, Equation (24a) becomes 

(L- p2ωn
2 )2vzn =0 (32) 

The general solution to this equation contains four terms: I0(pωnr), K0(pωnr), pωnrI1(pωnr) and 
pωnrK1(pωnr).  Again to avoid singularity at r=0, we retain only the “I terms.”  The solution to 
vzn is then written as 

vzn (r ) = c1n I0 (pω nr ) + c3n pω n rI1 (pω n r) (33) 
where c1n and c3n are unknown constants. 

The principal physical problem of interest for this case is material isotropy, which corresponds 
to p2=q2=1 mathematically.  In this case, the coefficient functions have the same general forms 
as those for the hollow cylinder problem [1] (see Cox and Yu [1999]), but the boundary 
conditions lead to different solutions.  The solutions are given as follows 

vrn (r) = −c1n I1(ωnr) + c3n 4(1 −ν )I1(ωnr) − ωnrI0(ωnr)[ ] (34a) 
vzn(r ) = c1n I0(ωnr) + c3nωnrI1(ωnr)  (34b) 
σ n r( ) = 2µ σ c1n

r( )c1n + σ c3n
r( )c3n[ ], τ n r( ) = 2µ τ c1n

r( )c1n + τ c3n
r( )c3n[ ] (34c,d) 

where µ and ν are the shear modulus and Poisson’s ratio, respectively, for the isotropic elastic 
cylinder and 

σc1n
r( )= −ω n I0 ωnr( )+ I1 ωnr( ) r ,  (35a) 

σc3n
r( ) = 3 −2ν( )ωn I0 ωn r( )− 4 1−ν( )I1 ωn r( ) r −ω n

2rI1 ω nr( ) (35b) 
2τc1n

r( )= ω n I1 ω nr( ), τc3n
r( ) = ωn rI0 ωnr( )−2 1 −ν( )ω n I1 ω nr( ) (35c,d) 

Enforcing the traction boundary conditions (16a,b) yields the following system of equations for 
c1n and c3n 

σc1n r = ri σ c3n r= ri

τc1n r = ri
τ c3n r= ri

 

 
 

 

 
 

c1n

c3n

 
 
 

 
 
 

=
αn 2µ

0
 
 
 

 
 
 

 (36) 

which yield 
c1n = −α nri ωnriI0 ωnri( )− 2 1− ν( )I1 ωnri( )[ 2µFn] ( )  (37a) 
c3n = αnri I1 ωnri( ) 2µFn( )  (37b) 

where 
Fn= ω n

2ri
2 I0

2 ωnri( )− I1
2 ωnri( )[ ]− 2 1 −ν( )I1

2 ωnri( ) (38) 

3.3 Verification 
To verify the mathematical form of the elastic solutions, the analytical results for a unit cell of 

an FRP bar are compared with the results obtained from a finite element analysis.  The unit cell 
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corresponds to the “type D” GFRP bar used in the bond tests of Malvar [18,19] (1994,1995). The 
geometric parameters are listed in Table 1 (specimen a).  The transverse isotropic material 
constants were estimated by Guo and Cox [14] using approximate formulae of Hashin [20].  The 
analysis assumptions associated with the contact are: (1) the contact length (Lt) is sr/8, and (2) t 
is compressive and uniformly distributed over Lt with a magnitude of 8 MPa, corresponding to 
σ=-1 MPa. 

Figure 3 compares the displacement solutions (ur and uz) along the r and z directions.  Two 
analytical results using 20 and 40 terms in the series expansions are shown to indicate the extent 
of convergence.  The finite element solution used 336 bilinear quadrilateral elements graded 
more finely near the applied traction.  The good agreement of these three results suggests that the 
analytical solution is correct. 

4. ELASTIC MODULUS 

With the elastic solutions, now we can compute the work expressions needed in Equations (5) 
and derive a closed-form expression for .  The analytical expression provides a convenient 
means of studying the dependence of  on various parameters. 

ˆ D e
ˆ D e

4.1 Formulation 
The work done by t in problem c (Figure 2c) can be calculated as follows 

Wc
t = 1

2 2πrit z( )[ ]ur
bar

− sr / 2

sr / 2

∫ ri , z( )dz = πri αnνrn
bar ri( )

n=0

∞

∑ = W0
bar + πri αnvrn

bar (ri )
n=1

∞

∑  (39a) 

where the superscript “bar” denotes the bar subdomain, αn and vrn(ri) are the Fourier coefficients 
of t and ur(ri,z), respectively, and W0=πriα0vr0(ri) is the work done by a uniformly distributed 
radial traction σ acting over sr.  In a similar manner, applying the elastic solution for the concrete 
subdomain (Cox and Yu [1999]) [1] and the definitions of Equations (2,3a), we can explicitly 
write the other work terms of Equations (5) as 

Wa
t = W0

con − πri α nvrn
con(ri )

n =1

∞

∑   (39b) 

Wb
σ = W0

con +πrisrσ
2 db

ˆ D con
e , Wd

σ = W0
bar + πrisrσ

2db
ˆ D bar

e  (39c,d) 
where db=2ri and the superscript “con” denotes concrete.  Substituting Equations (39a-d) into 
Equations (4b) and (5) and solving for  gives ˆ D e

ˆ D e = srσ
2db αn −vrn

con(ri ) + vrn
bar(ri )[

n=1

∞

∑ 
 
 

 
 
 
]

−1

 (40) 

Cox and Yu [1999] [1] gave  for the case of “rˆ D con
e

o sufficiently large relative to ri” (e.g. ro/ri≥2) 
as follows 

ˆ D con
e = −

α n
2κ n

α 0
2 Ecn=1

∞

∑
 

 
  

 
 

−1

 (41) 

where 
κ n = 1 −νc

2( )K1
2 ωnri( ) ωnri( )2

K0
2 ωnri( )− K1

2 ω nri( )[ ]− 2 1 −νc( )K1
2 ωnri( ){ } (42) 

is nondimensional.  (Note: The relationship σ=α0/ sr  is employed in the derivation of .) ˆ D con
e

For  the cases with transversely isotropic (FRP) and isotropic (steel) bars are considered 
separately. 

ˆ D bar
e
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4.1.1 Transversely Isotropic Bars – FRP Bar Case 
Based on the Case I solutions (section 3.2.1) and Equation (40), the radial elastic modulus of 

the interface for an FRP bar is 

ˆ D bar
e =

αn
2ξn

α0
2 Bnn=1

∞

∑
 

 
  

 
 

−1

 (43) 

where Bn is given by Equation (31), and ξn is dimensionless and given by 
ξn = 1

2 pηq − qηp( )I1 pωnri( )I1 qω nri( ) (44) 
The radial elastic modulus accounting for both contributions can then be written as 

ˆ D e = ˆ D con
e −1

+ ˆ D bar
e −1( )−1

=
αn

2

α0
2

n=1

∞

∑ ξn

Bn

−
κ n

Ec

 

 
  

 
  

  
 

  

−1

 (45) 

ˆ D e  is dependent on the traction distribution (via αn/α0), the seven independent material 
constants of the FRP and concrete (i.e., EL, ET, µLT, νLT, νTT, Ec and νc) and ri/sr (via ωnri). 

4.1.2 Isotropic Bars - Steel Bar Case 
Based on the Case II solutions (section 3.2.2) and Equation (40), the elastic modulus due to a 

steel bar is 

ˆ D bar
e =

α n
2ζ n

α0
2 Esn=1

∞

∑
 

 
  

 
 

−1

 (46) 

where ζn is dimensionless and given by 
ζ n = 1 −νs

2( )I1
2 ωnri( ) Fn  (47) 

Es and νs are Young’s modulus and Poisson’s ratio, respectively, for steel, and Fn is given by 
Equation (38) with νs substituted for ν. The radial elastic modulus accounting for both 
contributions can then be written as 

ˆ D e =
α n

2

α 0
2

n=1

∞

∑ ζ n

Es

−
κ n

Ec

 

 
  

 
  

  
 

  

−1

 (48) 

4.2 Results 
The above analytical results will now be applied to three bond specimens for FRP bars (Table 

1).  The calculated radial elastic moduli of the FRP-concrete interfaces and the “transverse 
stiffness” (Equation 19) of the bar are listed in Table 2.  Specimen “a” corresponds to the bond 
specimen of Malvar [18,19] using the “type D” GFRP bar.  The bar has a helical surface, and a 
relatively concentrated interface contact (Lt/sr=1/8) is assumed.  Such concentrated contact is 
possible since the surface misfit between the bar and concrete can be significant when relative 
slip occurs.  Specimen “b” corresponds to the bond specimen of Bakis et al. [21].  The CFRP bar 
has machined lugs with a square cross-section, and the contact length Lt is assumed to be the lug 
width.  Specimen “c” corresponds to some recent bond tests of a CFRP bar (manufactured by 
Marshall Industry) in light weight concrete.  The ribs are similar to those of a steel bar, and the 
contact length used for this bar is close to the rib width.  Two types of concrete are used in the 
specimen models: normal strength and light weight.  For our examples, the light weight concrete 
has a lower Young’s modulus but higher tensile strength than the normal strength concrete.  The 
ratio ro/ri verifies the assumption that the hollow cylinder of concrete is “sufficiently thick” for 
the previous solution [1] to be applicable (section 4.1).  A half-cosine distribution of traction 
over Lt is assumed in the calculations leading to Table 2. 
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It is well known that the “transverse stiffness” of an FRP bar ( ) is significantly less than 
that of a steel bar.  The results show that (for the values of L

ˆ D bar
T

t considered) reduced contact 
produces almost twice as much radial compliance (1/ ) as that associated with a uniform radial 
deformation (1/ ).  The combined radial compliance promotes the behavior shown in Figure 
1. 

ˆ D e
ˆ D bar

T

We identified (section 4.1.1) three factors that affect : (1) traction distribution, (2) material 
constants, and (3) r

ˆ D e

i/sr.  Parameter studies addressing these three factors are presented in the next 
three sub-sections.  The effects of the individual length parameters Lt, ri and sr are not studied 
separately, but they can be inferred from the effects of Lt/sr and ri/sr ratios. 

4.2.1 Effect of Traction Distribution on ˆ D e  
We consider three types of traction distributions: uniform, half-cosine and triangular (Table 3).  

The traction distribution affects the radial elastic modulus of the interface (for brevity, elastic 
modulus) via the term αn/α0.  The expressions in Table 3 indicate that the “nondimensionalized 
contact length” (β=Lt/sr) and the shape of the traction distribution (distribution type) affect the 
concentration of the traction.  For the same distribution type, the traction is more concentrated 
for a smaller β; whereas for the same value of β, the traction is most concentrated for the 
triangular distribution and least for the uniform distribution. 

The effect of the traction distribution is examined in Figure 4. /Eˆ D e c vs. Lt/sr (β) is plotted for 
three types of distributions and the three specimens defined in Table 1.  An increased 
concentration of the traction (either due to distribution type or β) produces a more compliant 
interface; i.e., for a fixed distribution type,  decreases with β, and for a fixed β,  decreases 
with the more concentrated distribution type.  In some applications, the contact length may be 
estimated but the actual traction distribution is generally unknown.  The results indicate that as β  
decreases the effect of the distribution upon the elastic modulus decreases.  This effect is most 
pronounced in comparing the two non-uniform distributions, which give very close predictions 
for a large range of β.  For full-contact (β=1) the elastic modulus becomes infinite for the 
uniform traction case, since the traction distributions of the rib-scale and bar-scale models are 
the same; any other traction distribution representing full-contact will yield a finite elastic 
modulus for the interface. 

ˆ D e ˆ D e

4.2.2 Effects of Material Constants on ˆ D e  

In the previous study [1] Cox and Yu [1999] the deformation of the reinforcing element was 
neglected.  This idealization was assumed to be valid for the example problem of a steel bar in a 
concrete matrix.  First this assumption is evaluated using the solution for the deformation of the 
bar.  Figure 5(a) shows the constituent contributions to  by steel, concrete and FRP for the 
Malvar specimen (specimen “a”).  The steel bar is assumed to have the same configuration as the 
GFRP bar.  The material properties of the steel bar are assumed to be E

ˆ D e

s=190 GPa and νs=0.3.  
The half-cosine traction distribution is used in the calculations.  The elastic modulus associated 
with local deformation of the steel bar is much higher than that due to local deformation of 
concrete or FRP.  Figure 5(b) validates the previous assumption [1] Cox and Yu [1999] since the 
elastic compliance of the steel-concrete interface is only slightly more than that associated with 
the concrete alone.  In contrast, the FRP-concrete interface is much more compliant reflecting 
the importance of the transverse compliance of the FRP bar. 

Figure 6 contains the results of a parametric study on the effects that the seven independent 
material constants have on .  Percent changes in  vs. percent changes in each material ˆ D e ˆ D e
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constant  are shown for each of the three specimens.  A half-cosine distribution of traction was 
assumed in the calculations.  The main trends are summarized as follows: 
1. Changes in EL, νLT and νc have the least effects on  for all of the specimens; ˆ D e ± 10% 

changes in these parameters lead to negligible changes in .  Changes in νˆ D e TT and µLT do not 
have the largest effects on  for any of the specimens but do produce relatively significant 
changes in . 

ˆ D e
ˆ D e

2. For interfaces between FRP and normal strength concrete (Figures 6a,b), changes in ET have 
the most significant effect on , whereas changes in Eˆ D e c have significant but less 
pronounced effects. 

3. For the interface between FRP and light weight concrete (Figure 6c), both ET and Ec have the 
most significant effects on , due to the reduced Eˆ D e c of light weight concrete. 

4.2.3 Effects of ri/sr on ˆ D e  and De 

The parameter ri/sr (bar radius / rib spacing) affects  through the argument of the Modified 
Bessel functions.  Figure 7 shows the effect of r

ˆ D e

i/sr upon /Eˆ D e c for the three bond specimens.  
The variation in the elastic modulus and of the constituent contributions (  and ) is 
shown.  Again a half-cosine traction distribution is assumed.  The parameters are given in Table 
1 except that r

ˆ D bar
e ˆ D con

e

i varies while sr is held fixed.  The range of ri/sr is set to (0,0.56] for the Malvar 
specimen to maintain a sufficiently large ro/ri ratio (Figure 7a) and is set to (0,1] for the other 
two specimens (Figures 7b,c). The main trends are summarized as follows: 
1. The elastic modulus decreases as the ri/sr ratio decreases; however, the variation in the FRP 

contribution becomes very small when ri/sr is relatively small. 
2. The effect of the FRP upon the elastic compliance is greater than that of the concrete, and 

their difference is more significant for the normal strength concrete-FRP interfaces (Figures 
7a,b) than for the light weight concrete-FRP interface (Figure 7c).  In all cases the difference 
in the two contributions decreases as ri/sr decreases. 
ˆ D e  was defined as the elastic modulus relating σ and qn.  As an alternative  description of the 

elastic response, the interface stiffness (De) relates σ and δn (Equation 3a).  The difference in D  
and D

ˆ e
e is a factor of 1/db.  When db (or ri) is constant, the variation in  also implies the 

variation in D
ˆ D e

e (sections 4.2.1 and 4.2.2).  The variation of De with ri/sr for the same three 
specimens is shown in Figure 8.  The factor 1/db causes De to be unbounded as ri approaches 
zero.  While the second conclusion drawn above for  still holds for Dˆ D e e, the first conclusion is 
no longer true.  For large ri/sr ratios, De increases slightly with decreasing ri/sr; whereas, for 
sufficiently small ri/sr ratios, De increases dramatically with decreasing ri/sr. 

5. APPLICATION 

The mechanical interaction between FRP bars and concrete provides a good application area 
for the developed theory.  For larger scale (bar-scale) modeling, we seek to homogenize the 
traction distribution and account for the local elastic deformation through the radial elastic 
modulus.  However, the concrete does not always behave linear elasticly since compressive, 
radial interface tractions (e.g., due to mechanical interlocking) can be large enough to split the 
adjacent concrete longitudinally.  Figure 9 shows the end-view of a specimen having three 
longitudinal cracks.  The ability of the elastic modulus to represent the effects of reduced contact 
when significant longitudinal cracking occurs, and the importance of the reduced contact on the 
radial response are examined in this section. 
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Again we examine the bond specimens described in Table 1.  Not all the bond specimens 
failed in splitting in the actual tests, but they still provide useful examples to evaluate the effect 
of the elastic modulus upon the cracking behavior.  Axisymmetric finite element models are 
adopted for these specimens.  Again the FRP is idealized as being transversely isotropic and 
linear elastic.  The concrete is modeled as quasibrittle, with longitudinal cracks modeled as 
cohesive cracks(Hillerborg et al. [1976]) [22] using the approach of Rots [23] for axisymmetric 
FE models.  Each crack is idealized as being planar with a process zone of infinitesimal 
thickness and finite length.  The cohesive stress (σcr) bridging the cracked surfaces is related to 
the crack opening (w) via the following relationship(Reinhardt et al. ~85) [24] (Figure 10) 

σcr = ft 1 + c1 ˆ w 3( )e−c2 ˆ w − 1 + c1( )ˆ w e−c 2[ ] (49) 
where  is the ratio of w to the critical crack opening,wˆ w 01, ft is the tensile strength of concrete, 
and c1 and c2 are model parameters.  The fracture energy Gf is defined as the energy required to 
create unit areas of fractured surfaces (i.e., the area under the σcr-w curve).  Typical values of ft, 
Gf, w0, c1 and c2 for normal strength and light weight concrete are listed in Table 4.  Three 
longitudinal cracks are assumed and the concrete material between the cracks is assumed to 
behave linear elasticly. 

To examine the effect of using the elastic modulus, axisymmetric FE models of unit cells of all 
three bond specimens were developed at both scales – the rib- and bar-scales (Figure 2).  The 
case of a uniformly distributed t over Lt is examined, thus the rib-scale model is referred to as 
being “ring-loaded.”  The “bar-scale” or homogenized model incorporates a homogenized 
traction and an interface with a stiffness De defined by Equations (3b) and (45).  Figure 11 shows 
the axisymmetric FE meshes for the ring-loaded models with enlargements of the loaded regions.  
Using symmetry only half of the unit cell is modeled, and roller boundary conditions are applied 
along the r-axis.  The homogenized models use meshes that are uniformly graded in the z-
direction, but more finely graded near the interface in the r-direction. 

The “interface responses” of the two types of models are compared in Figure 12 for all of the 
specimens.  The magnitude of σ (t Lt/sr for the ring-loaded models) vs. ∆u is compared for each 
of the constituent materials and their combination.  ∆u is the work conjugate average 
displacement (or relative displacement) corresponding to the loading; e.g., for concrete ∆u is the 
average ur(ri) over Lt (where Lt=sr for the homogenized models) while for the concrete-FRP 
combination it is the average interface separation over Lt.  Figure 13 examines the response of 
Malvar’s type D specimen for contact ratios (Lt/sr) of: 1, 1/2, 1/4, and 1/8.  The main 
observations are: 
1. For all of the specimens, the responses of both types of models are nearly indistinguishable 

for the concrete, FRP and their combination. 
2. All of the specimens examined exhibited snap-back behavior in the radial response.  The 

added compliance of the FRP increases the amount of elastic strain energy stored at the peak 
load and the potential of snap-back behavior in the radial response. 

3. The effect of FRP compliance is less pronounced for the specimen having light weight 
concrete since 1/  due to the light weight concrete is more comparable to 1/  due to the 
FRP. 

Dcon
e Dbar

e

4. The potential for snap-back behavior increases with a reduction in the contact area because of 
the increased elastic energy stored in local deformation. 
The predicted snap-back behavior is important in this application for both physical and 

computational reasons.  From a physical point of view, it suggests that concrete splitting failures 
produced by the loading of FRP bars may have a more “explosive nature”.  From a 
computational point of view, this severe instability can be difficult to follow when simulating 

                                                 
1 The smallest crack opening for which σcr=0. 
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bond behavior, because the needed radial contraction to follow the snap-back response (in a 
quasi-static analysis) may not be readily controlled in many pull-out type tests. 

6. SUMMARY AND CONCLUSIONS 

By accounting for “static equivalence” and “energy equivalence” the radial elastic response 
due to a known traction distribution along an interface (e.g., attributed to mechanical 
interlocking) can be accurately represented in a larger scale (i.e., homogenized) model.  The 
actual traction distribution causes deformation of each constituent material which can be 
represented by additional interface compliance in the homogenized model.  By making several 
simplifying assumptions and adopting a unit cell approach, expressions for the radial elastic 
modulus can be obtained in closed form.  The analytical expression for the elastic modulus 
reflects its dependence upon the traction distribution, material properties, and bar geometry. 

The theoretical development of the radial elastic modulus is applicable to the problem of the 
mechanical interaction between FRP bars and concrete.  The homogenized model (or “bar-scale” 
for this application) incorporates a radial elastic modulus that is very important toward 
predicting the longitudinal cracking in the adjacent concrete.  To study the effects of traction 
distribution, material properties, and bar geometry on the radial elastic modulus for FRP bars in 
a concrete matrix, three bond specimens are examined.  Among the findings were: 
1. An increased concentration of the traction (either due to distribution type or contact length) 

produces a more compliant interface.  As the nondimensionalized contact length (β) decreases 
the effect of the distribution type upon the radial elastic modulus decreases.  Even for full-
contact the radial elastic modulus is finite except for the case of a uniform traction 
distribution. 

2. Changes in EL, νLT and νc have negligible effects on the variation of , while changes in the 
other four material properties have a significant effect upon .   is most sensitive to 
changes in (i) E

ˆ D e
ˆ D eˆ D e

T for normal strength concrete and (ii) ET and Ec for light weight concrete. 
3. The ratio of bar radius to rib spacing (ri/sr) affects the elastic modulus ( ) and the elastic 

stiffness (D
ˆ D e

e) differently.  Reducing the ri/sr ratio leads to a decreased elastic modulus and 
increased stiffness of the interface. 
The same three bond specimens were used to examine how  affects the radial response 

(measured “at the interface”) when the concrete develops longitudinal cracking.  The 
homogenized model (bar-scale) was compared to a model with the actual traction distribution 
(rib-scale), and among the findings were: 

ˆ D e

1. For all of the specimens, the responses of both types of models are nearly indistinguishable 
for the concrete, FRP and their combination. 

2. Snap-back behavior occurred for all of the specimens, in part due to the elastic energy 
associated with local deformation.  For normal strength concrete the local deformation of the 
FRP was more significant, but for light weight concrete the local deformation of the concrete 
was equally significant. 
The actual interface traction distributions are generally unknown, but the results do provide 

additional insight into the behavior resulting from the mechanical interaction between FRP bars 
and concrete.  The results indicate that the contact conditions may have a significant effect upon 
the radial response, and the analysis provides data on an elastic modulus that accurately 
characterizes the effect of the interface traction state even when the concrete exhibits 
longitudinal cracking. 
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Table 1. Specimen data. 

Specimen 
 EL 

GPa 
ET 

GPa 
µLT 

GPa 
νLT νTT  Ec 

GPa 
νc 

a  39.8 9.29 3.78 0.274 0.42  30.7 0.17 
b  116.6 7.51 3.74 0.272 0.31  31.5 0.2 
c  119.5 7.55 4.0 0.294 0.45  15.7 0.17 

 

Specimen 
 Lt 

mm 
ri 

mm 
sr 

mm 
 

Lt/sr ri/sr ro/ri 

a  4.29 9.525 34.3  0.125 0.28 4.0 
b  3.8 6.35 12.7  0.3 0.5 13.5 
c  2.29 5.08 7.62  0.3 0.67 ≥7.5 

 
a - Malvar’s type D GFRP bar and normal strength concrete; 
b - Bakis et al. [21], CFRP bar and normal strength concrete; 
c - Marshall CFRP bar and light weight concrete. 

 

Table 2. Elastic moduli of FRP-concrete interfaces. 

Specimen 
 ˆ D bar

e
 

GPa 
ˆ D con

e
 

GPa 
ˆ D e  

GPa 
ˆ D e /Ec

 ˆ D bar
T

 
GPa 

ˆ D bar
T Ec

a  6.52 18.3 4.81 0.16  34.1 1.11 
b  14.3 54.3 11.3 0.36  22.1 0.70 
c  21.3 34.2 13.1 0.84  28.0 1.78 
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Table 3. Classification of traction distributions. 

Distribution Type t α0 αn 

uniform 
 

sr

Lt

, z∈[-Lt/2, Lt/2] sr  2sr
sin nβπ( )

nβπ
 
  

 
  , β=Lt/sr 

half-cosine 
 

πsr

2Lt

cos πz
Lt

 

 
  

 
 , 

z∈[-Lt/2, Lt/2] 

sr  2sr
cos nβπ( )
1− 4n 2β2

 
  

 
  , if 2nβ≠ 1;

2sr
π
4

 
 

 
 
, if 2nβ=1. 

triangular 
 

2s r

Lt

1+
2z
Lt

 

 
  

 
 , z∈[-Lt/2, 0];

2s r

Lt

1−
2z
Lt

 

 
  

 
 , z∈(0, Lt/2]. 

sr  2sr
sin nβπ 2( )

nβπ 2
 
  

 
  

2

 

Note: The listed magnitudes of t correspond to σ=1.  The dimensions of t are 
force/length2, and the dimensions of the α’s are force/length3/2. 
 

Table 4. Typical fracture parameters for concrete. 

Concrete Type  ft 
MPa 

Gf 
J/m2 

w0 
mm c1 c2 

normal strength  2.79 100 0.2 18.8 6.93 
light weight  3.18 100 0.1 3.56 2.0 
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Figure 1. Bond stress vs. slip for a CFRP bar. 
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Figure 2. Idealized analytical models. 
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Figure 3. Analytical vs. FE solutions for Malvar’s type D GFRP bar: (a) uz along r=ri, (b) 
ur along r=ri, and (c) ur along z=0. 
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Figure 4. Dependence of D  on contact length and traction distribution type for (a) 
Malvar’s type D specimen, (b) specimen of Bakis et al. [21], and (c) Marshall specimen. 
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Figure 5. Effect of constituent properties on D  for Malvar specimen. ˆ e
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Figure 6. Parametric studies of elastic constants for (a) Malvar’s type D specimen, (b) 
specimen of Bakis et al. [21], and (c) Marshall specimen. 
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Figure 7. Variation of elastic modulus with ri/sr for (a) Malvar’s type D specimen, (b) 
specimen of Bakis et al. [21], and (c) Marshall specimen. 
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Figure 8. Interface stiffness (De) vs. ri/sr for (a) Malvar’s type D specimen, (b) specimen 
of Bakis et al. [21], and (c) Marshall specimen. 
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Figure 9. Longitudinal cracks - end view. 
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Figure 10. Nondimensionalized cohesive stress-crack opening relationship. 
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Figure 11. Axisymmetric finite element meshes for ring-loaded specimens: (a) Malvar’s type D specimen, (b) specimen of Bakis et al. 
[21], and (c) Marshall specimen.  (Magnifications are 200% for I & II and 400% for III.) 
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Figure 12. Radial compression vs. interface separation for (a) Malvar’s type D 
specimen, (b) specimen of Bakis et al. [21], and (c) Marshall specimen. 
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Figure 13. Radial compression vs. interface separation for Malvar specimen under 
different contact conditions. 
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