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ABSTRACT 

 The use of fiber-reinforced polymer (FRP) bars to reinforced concrete is an 
application of composite material that has significant potential but still merits 
further investigation.   For reinforcing bars with a significant surface structure (i.e., 
ribs), the mechanical interlocking between the surface structure and adjacent 
concrete can dominate the mechanical interaction, commonly called the bond 
behavior.  This study focuses upon modeling the progressive failure of the surface 
structure of the bar  an issue unique to FRP reinforcing bars.  The method of cells 
is adopted in combination with constitutive models for the polymer matrix, fibers, 
and their interaction.  An elastoplastic-damage model within the framework of 
continuum damage mechanics is adopted to characterize the plastic and damage 
behavior of the matrix and fibers. The fiber-matrix interaction is treated with an 
“adhesive interface model” in which the breakdown of adhesion is defined in terms 
of a simple energy criterion.  A slideline representation is used to characterize the 
rebar-concrete contact condition.  Preliminary results using the model show good 
agreement with selected experimental data. The elastoplastic-damage model gives 
qualitatively correct predictions of the distribution of surface structure damage.  The  
slideline representation appears to give reasonable predictions of how the 
mechanical interlocking produces contact along the surface structure.  Additional 
work is still needed to address calibration of the constitutive models and 
localization within the FRP. 

INTRODUCTION 

 In recently years there has been an increased interest in applying composite 
materials to infrastructure problems. Some applications of composite materials in 
infrastructure may only require a transfer of technology, but other applications 
present unique technical issues that merit additional research.  One such application 
is reinforcing concrete with fiber-reinforced polymer (FRP) bars.  Most of the early 
studies on this problem were experimental and examined the behavior of complete 
structures or their components.  As with any reinforced system, the mechanical 
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interaction between the two constituents (FRP and concrete), commonly called the 
bond behavior, has a significant effect upon the structural behavior.  Many 
experimental bond studies have been conducted over the last ten years for a variety 
of different bars, but modeling efforts to both quantify the structural behavior and 
the underlying mechanisms that produce this behavior have been much more 
limited. 
 In this study we focus upon bars which have a significant surface structure, 
such that mechanical interlocking between the surface structure and the adjacent 
concrete dominates the mechanical interaction. The study also focuses upon smaller 
scale models that explicitly represent the surface structure of the bar (so called "rib-
scale model” [1]) and thus can potentially characterize the underlying mechanisms 
that produce the “structural bond behavior”.  Models at this scale could potentially 
be used in “optimizing” the surface structure of the FRP bars. 
 Previous modeling efforts at this scale for FRP bars [1] have not focused on 
the progressive failure of the constituent materials; in most cases the materials have 
been treated as linear elastic.  Apparently the first rib-scale analyses for FRP bars 
were conducted by Yonezawa et al. [2].  They performed “two dimensional plane 
analyses” of bars, examining the effects of various parameters upon bond.  Their 
analyses were linear, thus to account for the concentration of force transfer across 
the bearing faces of the ribs, they reduced the Young’s modulus in one layer of 
concrete elements adjacent to the other regions of the interface.  Uppuluri et al. [3] 
developed some axisymmetric rib-scale models of a few different bars.  For their 
models of commercial bars the concrete and FRP core were modeled as linear 
elastic.  A resin-rich outer layer of the bar was modeled as elastic perfectly-plastic, 
and the analysis was halted at the initiation of plastic behavior.  Slideline elements 
without friction were used to represent the contact between the bar and concrete. 
 The work presented here emphasizes the constitutive modeling of the FRP.  
The method of cells [4] for modeling the FRP and continuum damage mechanics 
(CDM) for characterizing plasticity and damage of the constituent materials are 
combined to model the progressive failure of the surface structure of the bar − an 
issue unique to FRP reinforcing bars.  A slideline element approach was applied to 
characterize the large slip of the concrete-rebar interface.  The following sections 
present an overview of the modeling and some numerical examples.  Additional 
details are given in reference [5]. 

METHOD OF CELLS 

 The method of cells [4] is a micro-
mechanical model for predicting the overall 
response of composites from the 
constitutive properties of their components. 
Fibers are assumed to be distributed 
regularly in the matrix so that it is sufficient 
to analyze the behavior of a single 
rectangular representative volume element 
(RVE). This single repeating element is 
further divided into subcells.  Each subcell 
follows its own constitutive relation.  In this 
study, the RVE consists of one fiber 
subcell, three matrix subcells, and two 
interface cells (Figure 1).  The formulation 
follows the approach in [4] but is omitted here for brevity. 
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Figure 1. Subcells of an RVE 



  

COUPLED ELASTOPLASTIC-DAMAGE MODEL 

 The elastoplastic-damage model for fiber and matrix was developed using 
the continuum damage mechanics based on irreversible thermodynamics with 
internal variables (see e.g., [6,7]).  In addition to the strain components ε e and εp, 
the following internal variables were introduced: r − scalar isotropic hardening 
variable of plasticity, D − damage tensor, and β − scalar corresponding to the 
isotropic hardening of damage.  We assume that the Helmholtz free energy (ψ ) can 
be decomposed into an elastic potential (W), a plastic potential (ψ p), and a damage 
potential (ψ d) as, 
 ψ (εe, D, α, r, β) = W (εe, D) + ψ p(r) + ψ d(β) (1) 
 A general form of W (εe, D)  could be expressed as the combination of the 
direct or mixed invariants of εe and D.  The following form was used in this study 
and its variations and extensions have been widely used (see e.g., [8]): 
 W (εe, D) = 0.5λ(trεe)2 + µ(trεe 2) + θ1trD (trεe)2 + θ4tr(εeDεe) (2) 
where, tr(.) denotes the trace of a tensor, λ and µ are the Lame constants for the 
initial undamaged state, while θ  and θ  are material constants. 1 4
 ψ p(r) and ψ d(β) are chosen to have the following forms (see e.g., [7,8]): 

 ψ p(r) =
R
b
∞ [br + exp(−br)] ,    ψ d(β) =

1
2

Kβ β 
2 (3,4) 

where R∞, b, and Kβ are model parameters.  The above form of ψ p can result in an 
isotropic hardening stress which increases with r and tends to saturate to some 
value, whick is consistent with experimental observation of polymer materials. 
 The conjugate thermodynamic forces can be obtained by taking the 
derivatives of ψ  with respect to the thermodynamic state variables as: 
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 Since damage will lead to the reduction of the actual load carrying area and 
induce stress concentrations around defects, the damage tensor D has been included 
in the yield function (F p) and the following extended Drucker-Prager type yield 
function is assumed for elastoplastic-damage materials with isotropic hardening: 
 Fp(σ, R; D) = σeq(σ; D) + cσ tr(σ) − (σ0 + R) (6) 
where, σ0 and cσ  are model parameters, and 

 σeq =
3
2

σ ' ( ):M D :σ ' ,    M(D) = I4 + c p(I4D + DI4) (7a,b) 

" ' " represents a tensor’s deviator, ":" denotes the contraction product to the second 
order of two tensors, I4 is the rank four symmetric identity tensor, cp is a model 
parameter introducing the damage coupling.  The incorporation of hydrostatic stress 
(tr(σ)) into the yield function is motivated by the experimental observation that the 
yielding of most polymers is pressure dependent. 
 Similar to the yield surface of plasticity, the damage surface describes the 
loading/unloading and neutral loading conditions.  The following form is assumed 
for the damage function: 
 F d(Y, B; D) = Yeq − (B0 + B) (8) 

 Yeq =
1
2 Y:L D :Y( ) ,    L(D) = I4 + c d(I4D + DI4) (9a,b) 



  

where, B0 and c d are material constants, the former specifying the size of the initial 
damage surface.  The form of L(D) is similar to the one proposed in [8]. 
 In this study, the flow rule and evolution laws are assumed to be: 
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where,  and  are the consistency parameters. &λp &λd

DAMAGE MODEL FOR FIBER-MATRIX INTERFACE 

 A simple micromechanical model for adhesive interfaces was adopted for 
the fiber-matrix interface.  A traction-relative displacement relationship is used to 
represent the mechanical behavior of the interface.  Both traction (σ ) and relative 
displacement (δ ) have tangent and normal components, i.e., δ = (δt , δn) and 
σ = (σt , σn).  An elastic-frictional interface relation incorporating a damage measure 
(h) is proposed as 
 σn = Kn(h)δn,    σt = Kt(h)δt + cf 〈−σn〉 sgn( ) (11a,b) &δt

where Kt and Kn are the elastic stiffnesses in the tangent and normal directions, cf  is 
the coefficient of friction, and 〈.〉 is the Macauley bracket symbol.  A simple power 
form was used to express Kt and Kn: 
 Kt(h) = Kt 0(1 − h)α,     Kn(h) =  Kn 0(1 − h)β when σn > 0 (12a,b) 
where K , K , α, and β are model parameters.  t 0 n0
 A purely mechanical evolution equation for scalar damage h can be 
expressed in term of energy dissipated during the decohesion process as 
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where, GI and GII are mode-I and mode-II interface toughnesses, respectively. It is 
assumed that compressive normal stress has no contribution to interface 
degradation. 

NUMERICAL EXAMPLES 

 This section presents numerical examples of the application of the rib-scale 
model to establish some of the capabilities and limitations of the approach. 
Numerical results were compared with experimental data, which were obtained 
from three studies. Figure 2 shows the sketches of FRP rebars employed in the 
experiments.  Table I lists the specimen dimensions and material properties.  
Young's moduli and tensile strengths of concrete specimens were estimated from the 
empirical relations suggested by CEB if they are not provided [5]. As shown, the rebars 
considered here vary significantly in the pattern of surface deformation, material 
properties, and dimensions. 

(b)

(a)

(c)
 

Figure 2. Sketches of FRP rebars used by three experimental studies: (a) Al-Zahrani 
[9], (b) Malvar [10], and (c) Cox et al. [11]. 



  

TABLE I.  TEST SPECIMEN DATA AND MATERIAL PROPERTIES. 

Experiment Al-Zahrani et al. Cox et al. Malvar 
Specimen size (mm) 150×150×150 

(cube) 
102×76 

(cylinder) 
102×76 

(cylinder)
Bar diameter (mm) 10.1 10.5 19 
Bond length (mm) 63.5 66.7 76.2 
 
Surface 
ribs 

Type 
Height (mm) 
Width (mm) 
Spacing (mm) 

machined ribs 
1.3 

3.8, 8.9 
12.7 

molded ribs 
0.63 
3.7 

7.63 

indentation
1.75 
30.2 
34.3 

 
Fiber 

Young's modulus (GPa) 
Poisson's ratio 
Compressive strength (MPa)

85(G 1), 220(C 2) 
0.2 

3450(G), 3450(C) 
− 88 

0.2 
3450 

 
Matrix 

Young's modulus (GPa) 
Poisson's ratio 
Compressive strength (MPa)

3.45(V 3), 2.24(E 4)
0.35 

72(V), 123(E) 

3.45 
0.35 
70 

3.45 
0.35 
130 

 
FRP 5 

Young's moduli (GPa) 
Shear's moduli (GPa) 
Poisson's ratios 

 
− 

119/7.51 
3.74/2.74 
0.27/0.31 

 
− 

 
Concrete 

Young's modulus (GPa) 

Tensile strength (MPa) 
Compressive strength (MPa)

31.7, 35.5, 40.3 
2.51, 3.35, 4.52 

32, 45, 66 

15.7 
3.18 
34.4 

30.7 
2.79 
29.1 

1 Glass fiber 2 Carbon fiber 3 Vinyl ester 4 Epoxy 
5 The effective properties of the FRP bars in the longitudinal and transverse directions. 

 For all the three specimens, the following calibration values are used for the 
material parameters in the micromechanical model: θ1=0.5λ, θ4=0.5µ, b = 4, 
Kβ =50, cσ=0.15, cp=cd=0, B0=0.28, kn0 = 200GPa, kt0 =100GPa, cf =0.5, α =β =2, 
GI =50kJm−2, and GII =50kJm−2. Axisymmetric FEM models were used to model 
each specimen.     A simple elastoplastic-damage model coupled with longitudinal 
cracks with softening was used to model the concrete in axisymmetric problems [5]. 

Al-Zahrani Tests 

 Al-Zahrani [9] conducted pullout tests on three types of FRP rebars: glass-
vinyl ester (G/V), carbon-vinyl ester (C/V), and carbon-epoxy (C/E) FRP with 

TABLE II. Summary of test and model results for the Al-Zahrani specimens. 
Maximum shear stress (MPa) FRP 

bars 
Rib width 

(mm) 
Concrete 
fc (MPa) Test Model % Diff. Failure 

G/V 3.8 
3.8 
3.8 
8.9 

45 
31.4 
66.1 
45 

39.71 
39.5 
41.0 
23.22 

40.8 
40.3 
43.0 
29.3 

3 % 
2 % 
5 % 
26 % 

Bar-rib 
Bar-rib 
Bar-rib 

Concrete 
C/V 3.8 45 42.81 41.7 3 % Bar-rib 
C/E 3.8 45 67.81 70.7 4 % Bar-rib 

1 Average of 3 tests. 2  Shear stress of concrete ribs instead of rebar ribs. 



  

axisymmetric surface ribs which were fabricated by machining indentations into 
smooth bars.  Different rib size and concrete were studied to investigate the effect 
of the rib width and concrete strength upon the mechanism of bond failure. 
 The FRP rebars were modeled with the elastoplastic-damage model of 
presented above. The interface between concrete and FRP rebars was modeled 
using an elastic-Coulomb friction model (friction coefficient µ = 0.49, shear 
stiffness kt = 3,000 N/mm3, and compressive stiffness kn = 30,000 N/mm3). 
 For FRP bars with a rib width of 3.8 mm, both the experimental 
observations and model prediction show that all material systems experienced the 
same failure mode  shearing off of the FRP ribs.  For the G/V bar with the rib 
width increased to 8.9 mm, both the experiment and the model indicate that the 
concrete now failed instead of the FRP.  The numerical results are compared with 
the experimental data in Table II.  The shear stress is defined as the pullout force 
divided by the total shear area of ribs. 

Malvar Tests 

 Malvar [10] conducted experimental studies on the bond behavior of four 
different GFRP rebars with different surface structures. The experiment considered 
here is for the "type d" GFRP rebar. During the fabrication of the bar, the surface 
tow is stressed so that helical indentations are obtained.  The bars were subjected to 
normal tractions at five different levels of compression with normal intensity of 
500, 1500, 2500, 3500 psi, and 4500 psi (i.e., 3.45, 10.3, 17.2, 24.1, and 31 MPa). 
Prior to performing the bond tests, the concrete cylinder was pre-split. 
 Concrete and FRP rebars were modeled in the same way as that for the Al-
Zahrani specimens. The concrete-rebar interface was modeled using slideline 
elements and treated as a nonlinear frictional surface using the same interface 
stiffnesses as the previous model.  Some of the material properties of the Malvar 
specimens are listed in Table I. 
 The model results are compared with the experimental results in Table III. 
The difference between test and model results is within 15%. 

Cox et al. Tests 

 Cox et al. [11] conducted a series of bond tests on four different CFRP bars 
using the Malvar specimen.  The bar examined here is the C-BAR rod containing 
carbon fibers.  The bars were subjected to normal tractions at the lower four levels 
of compression listed above.  Prior to performing the bond tests, the concrete 
cylinder was pre-split by using the standard split cylinder test.  The concrete is 
lightweight incorporated expanded shale for the coarse and fine aggregate. 

TABLE IV. SUMMARY OF TEST 
AND MODEL RESULTS FOR THE 
COX ET AL. SPECIMENS. 

Max. shear stress (MPa) Conf. 
stress Test Model % Diff. 

500 psi 
1500 psi
2500 psi
3500 psi 

4.381 
6.412 
8.162 
10.41 

3.08 
6.39 
8.33 
10.3 

30 % 
1 % 
2 % 
1 % 

1 Average of 3 tests. 2 Average of 2 tests. 

TABLE III. SUMMARY OF TEST 
AND MODEL RESULTS FOR THE 
MALVAR SPECIMENS. 

Max. shear stress (MPa) Conf. 
stress Test Model % Diff.

500 psi 
1500 psi 
2500 psi 
3500 psi 
4500 psi 

3.37 
7.40 
10.42
12.07
13.47 

3.40 
7.36 
10.45 
13.39 
15.55 

1 % 
1 % 
1 % 
11 % 
15 % 

 



  

 Concrete and the concrete-FRP interface were modeled in the same way as 
before.  Behavior of the external molded ribs was modeled using the elastoplastic-
damage model while the FRP core was idealized as being transversely isotropic and 
elastic. 
 The results for the numerical model are compared with the experimental 
results in Figure 3 and Table IV.  The model successfully predicted the bond 
strengths at confinement stresses of 1500, 2500, and 3500 psi.  The bond behavior 
predicted by the model tends to be more brittle than the test result. 
 Figure 4 shows four photographs of bar surface damage and corresponding 
model predictions of the rib damage for two tests.  The ribs of the 500 psi specimen 
were only "slightly damaged", while the ribs were almost sheared off for the 2500 
psi and 3500 psi specimens.  The predicted inelastic deformation of specimens at 
the same level of rib-damage provides a measurement of the amount of surface 
failure.  The model successfully predicts the increase in surface damage with an 
increase in confinement. 

DISCUSS AND CONCLUSIONS 

 A rib-scale model was developed to characterize the bond behavior resulting 
from the mechanical interlocking between FRP reinforcement and the surrounding 
concrete.  The FRP material behavior was modeled using the method of cells.  The 
fiber and matrix cells were modeled using a continuum damage mechanics model.  
A micromechanical interface model was proposed for characterizing the behavior of 
the bar-concrete interface. 
 Numerical examples presented here considered three types of FRP bar with 
significantly different surface structures.  Most of the predicted bond strengths were 
within 15 percent of the measured values.  The rib-scale model successfully 
predicted the failure modes for specimens with machined ribs.  The predicted 
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Figure 3. Bond stress vs. end slip for the Cox et al. [11] specimen.



  

(a) 500 psi (b) 1500 psi (c) 2500 psi (d) 3500 psi  
Figure 4. Deformation and surface damage (||D||2) of the bar rib. 

surface damage for the bars having the molded ribs was qualitatively consistent 
with the experimental observation. 
 Additional work is still needed to address calibration of the constitutive 
models, localization within the FRP, and convergence problems when the 
constitutive models predict local crushing. Nonetheless, the initial results are 
encouraging and reflect the potential of using the model to predict bond strength 
and understand the contributions of mechanisms that affect the bond behavior up to 
rib failure. 
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