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Abstract

The fabricated surface structures of steel and most fiber-reinforced polymer (FRP) bars
produce complicated mechanical interactions with concrete. At one scale of modeling, the
bar-concrete interface isidealized as smooth, and the actual interaction is homogenized over
a characteristic length associated with the surface structure. To account for the eagtic
aspects of the mechanical interlocking, an interface with an elastic component may be
introduced. The eastic modulus associated with the radial response is important in
predicting the splitting failure of concrete and is the key issue of this study.

For the case of steel bars, limited experimental data suggests that the radial compliance
varies with contact conditions. An analytical study has demonstrated that an “effective
elastic modulus’ of an interface varies with the distribution of the interface traction, but the
analytica model is only valid for relatively stiff reinforcement. An overview of the
extension of thiswork to address relatively compliant reinforcements (e.g., FRP bars) is
presented. For steel bars, asimple contact model combined with selected experimental data
provides an approximation for the contact conditions near the ribs; this approximation can
then be used to account for the effects of changing contact conditions upon the radial elastic
modulus in a phenomenological bond model. Incorporating these effects into the bond
model significantly improves the predicted radia responses of selected bond specimens.

Introduction

Modeling the behavior of reinforced concrete requires models for both the constituent
materials and their interaction. For steel and most fiber-reinforced polymer (FRP) bars
their fabricated surface structure (e.g., ribs or indentations), by design, results in a
complicated mechanical interaction with concrete. Although several models have been
proposed to study the mechanical interaction and its effect upon structura behavior,
additional work is needed to quantify the radial component of the interaction which is
important in predicting splitting failures of concrete (both for steel and FRP bars). In
recent years, additiona experimental studies have been conducted (see e.g., Gambarova et
al. 1989, Malvar 1992, 1995, Noghabai 1995, Tepfers and Olsson 1992, and Ghandehari
et al. 1999) that examine some aspects of the radial response. These studies provide
important data for obtaining a better understanding of the underlying mechanics.
Additional andytical and numericd studies are aso needed to better understand and
characterize the observed experimenta behaviors.

The mechanical interaction between reinforcing "Rib-scale” "Bar-scale"
bars and concrete, often referred to as bond, is

generally attributed to three mechanisms - _f%
chemicd adhesion, friction, and mechanica |
interlocking. For reinforcements with a

dgnificant  surface  sructure,  mechanical -
interlocking is the dominant mechanism affecting F!G- 1. Two scales of bond analysis.
the bond-slip behavior. The effects of the mechanical interaction have been modeled
computationally at several scales (see e.g., Cox and Herrmann 1998), two of which are
depicted in Fig. 1. Usually inrib-scale analyses either the geometry of the surface structure
or itslocal effects (e.g., a concentrated traction distribution near each rib) are explicitly
modeled. In bar-scale analyses, the geometry of the interface isidealized as cylindrical,




and the interface traction is homogenized over a characteristic length associated with the
surface structure. As such, the effects of the mechanical interlocking must be accounted for
indirectly in bar-scale models. One approach to modeling the mechanical interaction at this
scale isto adopt an interface idealization (see e.g., De Groot et al. 1981, and Cox and
Herrmann 1998).

While the analysis approach presented here is not tied to a particular bond model, validation
of the model by Cox and Herrmann (1999) motivated this study. This bond model,
combined with specimen models, adequately reproduced the experimental results from
several different studies using asingle calibration. (Both steel and FRP bars have now
been considered.) The model was formulated within the mathematical framework of
elastoplasticity, so the model components to be defined were the generalized stresses and
strains, elastic moduli, yield criterion, and flow rule. The generalized stresses are the
homogenized tangent (t) and normal (o) traction components™ on the cylindrical interface,
and the generalized strains are the corresponding work conjugate rel ative displacements (9,
and 9, respectively) nondimensionalized by the bar diameter (D,). The generdized
stresses and strains are thus written as

Q'=(t o)andq’ =(5,/D, 9,/D,) (1)
The strains g (and relative displacements) are additively decomposed into the elastic (q°)
and plastic (g°) components, and alinear relationship between the stresses and dagtic

strainsis assumed, i.e. Q = D°Y°. Experimental dataindicatesthat it is sufficient to only
retain the diagonal dastic moduli giving

D°=diag(D}}, D5,) (2)

D can be calibrated from bond test data, but very little data exists to evaluate Dy,. This
paper focuseson D, for two reasons. For amodel that “fully couples’ the tangent and
normal responses, the bond stress-slip behavior is affected by the radial response.
Furthermore, the radial elastic component of the interaction is very important in predicting
splitting failures of adjacent concrete.

For simplicity (and lack of experimental data) D5, for most bond models is defined to be
constant. However, two unpublished tests of Malvar (1992) suggest that the radial elastic
response becomes more compliant with radial dilation (i.e., increasing d.). To account for
this variation, elastoplastic coupling was recently introduced into the model of Cox and
Herrmann by expressing D5, asafunction of the radia plastic strain g} . Asapreliminary
model Cox (1996) proposed alinear relationship between the interface compliance and g3
of theform

e -1

(Dzz/Ec) =k + kx5 (©)
where E, is Young's modulus of concrete and k, and k, are model parameters. While the
prediction of radial responses was improved by this formulation, additional justification
was sought. An analytical study by Cox and Y u (1999) showed that an “ effective interface
compliance” increased astheradia traction became more concentrated.

The next section outlines how this analytical work can be extended to address FRP rebars
(which are relatively compliant in the radial direction). To bridge the gap between the
analytical work and the proposed elastoplastic coupling, the third section presents asimple
“contact model” to relateq) to a*“ contact length.”

L Axisymmetry is assumed in the modeling, so equivalently the traction components are referred to asthe
longitudinal and radial components.



Analytical Models for the Equivalent Elastic Modulus of the Interface

The analyses for studying the elastic modulus Tib-scale™ Barscale™
are based upon the assumptions of axisymmetry . 5, 3 . 5 .
and a periodic structure along the z-axis (i.e., ) 1z . ) % N

longitudinal axis). Let s denote the length of
one cycle of the surface structure (e.g., rib
spacing). To define the eastic modulus,
models of the radial elastic responses of the rib-
and bar-scdle models are examined. A 4 9 t
macroscopically homogeneous interface traction
is considered thus reducing the analysis to that
of aunit cell; see Fig. 2, where the concrete and H I u
bar are depicted as a thick-walled cylinder and o B,
cylinder, respectively.  Although the rib

geometry is not explicitly modeled in the rib- — ¥ T n

scale unit cell, its effect is idedized as a " NI/ [T,

concentrated radial traction distribution t, over (&) g B =

the length L,. For the bar-scale models an 5 o

interface with elastic modulus D5, is adopted, (T-T\I T ]

and the key stepsin characterizing D5, include: T+ i

(1) defining the idealized rib- (problems aand G De i e

¢) and bar-scale analytical models (problems b , e , Ly
IG i o IG .

and d) shown in Fig. 2, (2) determining o via (2] id]
its static equivalence to the rib-scale traction  FIG. 2. Idedlized analytical models.
distributiont , i.e.,

L/2

1 N

=30, t.dz

(4)

(3) solving eastic problems a—d to obtain expressions for the elastic strain energies stored
in the two systems, and (4) postulating that the two systems should store the same amounts
of elastic strain energy and then equating the two energy expressions to obtain an analytical
solution for D,,. For brevity details are omitted, but for problems (a) and (c) the
displacements can be expressed in terms of generalized Fourier series, and series
expressions can be obtained for the work done by the tractions (see e.g., Cox and Y u 1999
for additional details). Since the systems are elastic, the work done by the each traction
equals the strain energy stored in the body. Thus “energy equivaence” of therib- and bar-
scale systems requires

Vo + W = W+ W ®)

where V\/; denotes the work done by t, in problem (&), and so on. Applying the elastic
solutions and the interface definitions by Egs. (1-2), we can express EqQ. (5) as

¥ . ¥ ..
Q- & () S+ W - n & ()0 = W + W 450D,/ D3 (6
n=1 n=1

where D,=2r,; the superscripts “bar” and “con” denote the bar and concrete, respectively;
a, and v, (r;) are Fourier coefficients of t, and u,(r;), respectively; and W, is the work done
by auniformly distributed traction o acting over the length s. Solving Eq. (6) for D3,
gives

¥
D5, =- SGZDb/ é- O‘n[VrCr?n (r) +VPr?r (r )] (7a)
n=1L

For steel bars, whose contribution to the elastic modulus can beignored, D5, iswritten as



TABLE 1. Properties of the Five 12

Unit Cell Modelsfor Fig. 3.
Casef L, D,
a S, n/a
b | 1.587 mm n/a
c s Eq. (7b) with o
L,=1.587 mm
d || 6.37 mm n/a
e s Eq. (7b) with
L=6.37 mm N

0.004 0.008 0.012
. & 9 u (mm)

Dy, =- a/a (ot foo)x (@,rive) (7B)  FIG. 3. Radial traction versus

n=1 displacement for 5 unit cell models of a
where x is a dimensionless function of concrete cylinder subjected to an
nondimensiona parameters. Clearly D5, internal traction.
depends on t, (via o /a,), but the
concentration of the traction must be related to the bar scale model. The potentid
importance of D5, with respect to the radial complianceisillustrated in Fig. 3 for the
Malvar specimen where s,=12.8 mm and case a denotes a bar scale model that does not
account for areduced contact length.

Contact M odel
The smplified “ contact model” presented in this section isonly applicable to the interaction
between the ribs of steel bars and concrete. The sole objective is to estimate the contact
area. For steel bars that have not yielded, most of the deformation mechanism is associated
with the failure of concrete. Here we limit our consideration to the accumulation of a
wedge of damaged concrete on the rib face (see e.g., Lutz and Gergely 1967 and Malvar
1992 for experimental evidence). Fig. 4 depicts the kinematics of the contact model where
geometry givestherelations
p, = h/tang (8a)
d; =h, - L tang (8b)
We assume that as concrete fails due to contact stresses a new concrete wedge surface
(corresponding to @ and p,) forms that isin contact with the concrete.

The traction components o, and t,, on the actual contact surface of the concrete (Fig. 5a)
can be approximated by thetractionst, and t, (Fig. 5b) by assuming h<<D,. The latter are
then homogenized over s, to give o and T in amanner similar to that depicted in Fig. 2.

L,
]

Concrete

;T_._ —L = 'Concrets
_L 0y Y Wedge"
T P
N — Bar ) i
(a) (b}
FIG. 4. Kinematics of the contact model FIG. 5. Two descriptions of the “actual

relating contact length to plastic dilation. interface tractions.”



Uniform tractions are shown for simplicity. The relationships between the two traction
descriptions are given by
o,, = cosp (o cosg- tsing)s /L, (9a)

1,, = cosyp (o sing + T cosp)s /L, (9b)

Last, we consider the material failure and dlip conditions associated with the stresses. For
this problem there are severa obstacles to applying amultiaxial failure criterion to concrete
(e.g., the complete stress state is unknown). Though simplistic, we assumed that the local
crushing is governed by the uniaxial condition

-o, £ (10a)
wheref, isthe uniaxial compressive strength of concrete. In addition, Coulomb friction is
assumed to govern the dip along the actual contact interface, i.e.,

kJEn(-o,) (106)
where u isthe coefficient of friction.

Elastoplastic Coupling

The analytical model for the elastic modulus and the TABLE 2. Experimental Data
contact model will now be combined with 5P (mm)|o(MPa) ((MPa)
experimental data to obtan a form for the 2

elastoplastic coupling (Eq. 4). Table 2 gives the [Test6 | 0.512 | -3.45 5
experimental datafor o, s, and t from threebond |Test8 | 0.135 | -17.2 | 14
tests when the maximum dilation first occurs (Mavar frest 100 0.029 | -31 22
1992). Weassume 9, <<d} sothat 8)'»9,. At this
state, we also assume that both crushing and dliding occur on the interface; i.e., inequalities
(10) are equalities. Given the data in Table 2, there are six equations (8-10) in six
unknowns (¢, p, L, o, T, w), where u has been treated initialy as an unknown.
Solving the equations for each of the three tests gives values for u of 0.554, 0.549 and
0.550, respectively. These values are surprisingly consistent for such a simple model and
fall within the range of some reported experimental measurements: [0.45,0.70] (Idun and
Darwin 1995). Theresultsaso give valuesof L, for each 8, which can be used with Eq.
(7b) torelate D5, and g5. Fig. 6 shows the

res'lltlng affine mOdeIS (Eq 3) flt to the - - -Umiformdistrl)utionmodell_—'_

Cosine distribution model

experimental datafor two traction distributions.
The dope of the line (k,) is not strongly
dependent on the distribution type, but the
negative intercept for the uniform distribution is
not physicaly meaningful. The model based
upon a cosine distribution is adopted for this
study; the calibration parameters are k,=0.034
and k,=27. Incorporating these results into the
bond model of Cox and Herrmann (1998) has
sgnificantly improved the predicted radid FIG. 6. Elastic compliance as afunction
responses of different specimens (see e.g., Fig. of the generalized plastic dilation.
7).

0 0.01 P 0.02 0.03
2

Conclusions

(1) An analytical expression for D3, which characterizes the radial elastic response of an
interface is obtained by applying “static and energy equivalence measures’ to the rib- and
bar-scale analytical models. Including this elastic modulus in an interface model may



account for some aspects of the local interaction that are
not explicitly characterized in larger-scale modeling. @ --test3  —e— without coupling I

sreexece test 8 with coupling
(2) A simple “contact model” was presented to relatethe 20
contact length to the plastic dilation in the model of Cox
and Herrmann. For three bond tests, the modd is
consistent with the experimental data, but additional
experimental datais needed.

(3) Combining the analytical model for D, with the
“contact model” provides an analytical basis for the
proposed el astoplastic coupling and the associated model
parameters. Improvements in the predicted radid
responses of bond specimens are obtained by
incorporating elastoplastic coupling into the mode.

o Bond Stress (MPa) &
1

s=-17.2 MPa (2.5 ksi)
1 1 1
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