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Mechanical interaction between steel bars and concrete is sometimes idealized in finite
element analyses as an interfacial behavior.  Interface models that couple the tangent and
normal responses can produce both pull-out and splitting failures.  The ribs’ wedging effect is
represented by radial dilation of the interface, which is composed of inelastic dilation and elastic
contraction (representing local elastic deformations).  The effective radial elastic stiffness of the
interface is related to reduced contact conditions which it accurately characterizes for a simple
splitting model.  A model (based upon a concrete wedge on the rib face and experimental data) is
presented for estimating the contact length; it predicts the concrete wedge size and other
parameters qualitatively consistent with experimental results.  Variation in elastic stiffness (due
to differing contact conditions) is incorporated into an interface bond model, and the predicted
radial responses of selected bond specimens are improved by the more detailed treatment.
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INTRODUCTION
General models for the behavior of reinforced concrete require models for the constitutive

materials and for their mechanical interaction – commonly called bond.  “Bond models” that can
be used in finite element analyses (FEA) have been proposed at various scales (see e.g., Cox and
Herrmann 1998 and McCabe and Pantazopoulou 1998 for more details), two of which are
depicted in Fig. 1.  Usually at the smallest scale ("rib-scale" analyses) the geometry of the surface
structure (i.e., ribs or deformations) of the bar is explicitly modeled, and an objective of the
analysis is to examine the underlying mechanisms that produce the observed bond behavior (e.g.,
Ingraffea et al. 1984, Ozbolt and Eligehausen 1992; and Darwin et al. 1994).  In "bar-scale"
analyses the bar-concrete interface is idealized by a cylindrical shape, and thus the surface
structure of the bar is not explicitly modeled.  At both of these scales the bar is represented as a
solid (i.e., not an axial rod), but at the bar-scale the effects of the local mechanical interaction
must be accounted for indirectly.  Bar-scale models can be classified by how this mechanical
interaction is represented: (1) by an increased compliance of the concrete matrix adjacent to the
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bar, or (2) by an increased compliance of the concrete-bar interface (e.g., De Groot et al. 1981
and  Cox and Herrmann 1998).  The first approach is simpler but generally does not reproduce
the wedging effects of the ribs and thus can only simulate pull-out failures.  The second approach
(the interface idealization) is addressed in this paper since it can potentially simulate both pull-
out and splitting failures.  (For brevity, the term “bar-scale model” in the remainder of the paper
will only refer to interface idealizations.)  While bar-scale models do not explicitly model the
underlying mechanisms that produce the observed bond behavior, they are potentially amenable
to the analysis of structural components.

This paper will address an important aspect of bar-scale models that are based upon an
interface idealization – the radial elastic stiffness associated with the interface.  The radial elastic
stiffness is important because it can have a significant affect upon the prediction of splitting
failures.  In some applications of interface models, the interface stiffness does not have a physical
interpretation; for a bar-scale bond model the interface stiffness can be associated with the local
elastic deformation that occurs between the ribs and adjacent concrete, which is not explicitly
modeled at this larger scale.  To better define the radial elastic stiffness of the interface, the
idealizations associated with a bar-scale model are further described below.

Bar-scale idealizations
The interface idealization of bond can be described in terms of two simplifications (Cox and
Herrmann 1998).  The first is the homogenization (or smoothing) of the interface traction
distribution and the simplification of the interface geometry.  Consider a state where no adhesion
remains between the bar and the concrete and thus mechanical interlocking dominates the bond
behavior.  Fig. 2 presents close-up views (constant θ) of an axisymmetric surface structure and
the corresponding cylindrical idealization, with the z-axis corresponding to the axis of the bar.
Fig. 2[a] presents a schematic of the radial component of the interface traction acting on the
concrete, sometimes called the “splitting or bursting force,” for a unit surface element  consisting
of the complete bar surface for one cycle of the rib geometry.  In this case, the ribs are assumed
to be perpendicular to the bar's axis, so the length of the unit surface element is the rib spacing
(sr).  Fig. 2[b] presents a schematic of the radial component of the interface traction acting upon
the concrete for a bar-scale idealization.  The bar-scale idealization will produce a continuous
traction distribution that is smoother than but statically equivalent over a unit surface element to
the actual traction distribution.  For example, the uniform distribution of σ shown in Fig. 2[b]
would be the bar-scale idealization of a periodic traction distribution as depicted in Fig. 2[a] for a
single interval.  Though not depicted in Fig. 2, the actual interface geometry changes with
concrete crushing and cracking.

The second simplification, unique to interface idealizations, addresses the deformation of a
unit cell of the bond zone – the local concrete region that behaves inelasticly due to the
mechanical interaction.  Figs. 2[c] and 2[d] give schematics of the deformation of the actual unit
cell versus the deformation of the same unit cell in the bar-scale model.  δn

e denotes the elastic
extension of the interface (δn

e  in Fig. 2[d] is negative).  For the two unit cells, note the difference
in the distribution of the radial displacement.  The elimination of the surface structure and the
corresponding traction concentrations produces a different response in the concrete, even for a
"perfect matrix model."  In this paper, the objective is to partially account for the effects of these
simplifications upon the prediction of splitting the adjacent concrete.

The remaining sections of the paper present: (1) research significance, (2) an overview of the
interface model and validation problems that motivated the study, (3) a key result from a recently
obtained analytical solution and a brief description of how the analytical solution can be used to
determine the equivalent elastic modulus of the interface idealization, (4) a demonstration of how
the elastic modulus can be used to model the effects of contact conditions upon splitting, (5) a
simple model for estimating contact conditions, (6) an improved radial elastic idealization for a
bar-scale bond model, and (7) a brief discussion and conclusions.
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RESEARCH SIGNIFICANCE
A bond model for FEA that can predict pull-out and splitting failures in structural components

could be combined with experimental studies to better understand the progressive failure of
structural components and used to calibrate configuration dependent bond models applicable to
large scale structural analysis.  The bond model discussed in this paper can potentially meet these
needs (McCabe & Pantazopoulou 1998), yet information on the radial component of the
mechanical interaction is lacking.  An analytical solution (Cox and Yu 2000) and selected
experimental results (Malvar 1992) are the basis for an improved radial elastic component to the
model – a key toward predicting the extent of longitudinal cracking caused by “bond interaction.”

BOND MODEL OVERVIEW
The analysis presented in this study could be applied to bar-scale, interface models in general.

A brief overview of the mathematical form of a particular bond model (Cox and Herrmann 1998)
is presented since validation of the model by Cox and Herrmann (1999) motivated this study, and
some of the findings of the current study will be demonstrated with this model.    This bond
model, combined with specimen models, reproduced the experimental results from six different
studies with acceptable accuracy using a single calibration.  Only four physical parameters are
needed to apply the model: the concrete's elastic modulus and tensile strength and the bar
diameter and rib spacing.  The model was formulated within the mathematical framework of
elastoplasticity, so the model components to be defined were the generalized stresses and strains,
elastic moduli, yield criterion, and flow rule.  The generalized strains for the bar-scale model are
defined to be the tangent and normal displacements (δt and δn, respectively) of the concrete
relative to that of the bar interface nondimensionalized by the bar diameter (db).  The generalized
stresses are the smoothed tangent and normal components of the interface tractions (τ and
σ respectively), often called the bond and splitting stresses.  The generalized stresses and strains
are thus defined as

Q = τ σ( ) and q =
1
db

δ t δ n( ) (1a,b)

where the tangent and normal directions correspond to the z- and r-directions, respectively, and
the relative displacements are defined for points on the interface that are coincident in the
undeformed state.

For monotonic loading the evolution of the yield surface is characterized by a single measure
of the internal state, the bond zone degradation, defined as

d = min(δt
p

sr
,1)

(2)
where δt

p
 is the plastic slip and sr is the rib spacing.  The yield criterion for the model is of the

form
τ
ft

 = C d Φ d,σ d -σ
ft (3)

where ft denotes a measure of the concrete tensile strength; C is the isotropic hardening and
softening function; and ˆ σ  is the kinematic softening function.

An additive decomposition of the generalized strains, and thus of the relative displacements, is
adopted such that

q = q e + qp
(4)

where qe and qp denote the generalized elastic and plastic strain components, respectively.  The
generalized plastic strains are defined by the flow rule which is of the form

qp  = λ
sgn τ
g σ,d (5)
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where λ  denotes the consistency parameter.  The kinematic behavior of the ribs wedging under
the concrete, and other related effects, are characterized in the flow rule by a radial dilation.
Since the rate of plastic slip has a magnitude of λ , g denotes the rate of plastic dilation (q2

p ) with
respect to plastic slip.  One important experimental observation characterized by the flow rule is
that the rate of radial dilation decreases with confinement stress (-σ).  For details on the
mathematical form of g(σ,d) see Cox (1994).

The elastic component of the model is addressed here.  While the elastic moduli seem like a
relatively simple component of the model, they can have a strong effect on both the predicted
response and the numerical implementation.  For the original model (Cox and Herrmann 1998)
the elastic response under monotonic loading was characterized by the following incremental
moduli

De = Ec
0.1   –0.0012  sgn δt

 –0.0012  sgn δt 0.04  
(6)

where Ý Q = DeÝ q e , sgn(0)≡0, and Ec  is Young’s modulus of the concrete.  Magnitudes of D11
e  and

D21
e  were obtained principally from experimental data (Cox 1994).  The elastic response in the

model is attributed primarily with the local interaction of the ribs and adjacent concrete, which is
consistent with the observed variation of the "tangent elastic response" with rib geometry.

Consider a few important observations that motivated the current study:
(1) The ability of a bond model to predict splitting failures is important toward predicting the
progressive failure of structural components.  For this model, the wedging action of the ribs is
represented by the radial dilation of the interface.  The flow rule produces a radial dilation, which
prior to splitting will increase the confinement stress resulting in elastic contraction of the
interface (as Fig. 2[d]).  Therefore, D22

e  is important in the prediction of the radial response which
can produce splitting failures.
(2) The value of D22

e  was obtained from calibration since an experimental or analytical basis for
its magnitude was lacking.  If D22

e  can be attributed to the rib-concrete interaction, its value
should vary with the contact conditions.  Two unpublished tests of Malvar suggest that the elastic
radial response becomes more compliant with radial dilation.  Furthermore, Malvar (1992)
performed bond tests at different levels of confinement stress applied to the outer surface of a
small cylindrical specimen, and the length of the concrete wedge that formed on the front of the
rib face increased with the confinement stress.

These two points are consistent with the following two validation results that partially
motivated this study.*  First consider the radial response predicted by the model for the tests of
Malvar (1992).  An axisymmetric finite element (FE) model of the specimen that incorporated
the bond model gave acceptable predictions of bond stress vs. slip but under predicted the radial
response.  Fig. 3 presents bond stress vs.  radial dilation for three levels of confinement stress,
where the radial dilation corresponds to the radial displacement at the outer surface of the
cylindrical specimen.  Reduction in accuracy with increasing -σ can be attributed to excessive
elastic compliance of the interface.

A validation result for the tests of Shima et al. (1987) also suggests that the radial response
needs further examination.  Fig. 4 shows the predicted radial dilation along the embedment
length at the loading level at which the model first predicts the bond zone is damaged along the
entire embedment length.  The contraction near the free end of the specimen is physically
unrealistic, indicating that the value of D22

e  is too small in this end region.  The region has
experienced little plastic slip so there is likely to be full contact between the bar and the concrete
– not merely contact at the ribs.  If D22

e  were defined to account for contact conditions along the

                                                
* Several validation results were presented by Cox and Herrmann (1998), but this paper only examines the two
results that suggested the radial elastic response needed further investigation.
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interface, the model could potentially predict locally higher generalized stresses near the free end,
consistent with Shima et al.'s experimental data.

Apparently how D22
e  should change with contact conditions has not been investigated for the

bond problem.  Among the sources for increased compliance are microcracks near the rib-
concrete interface, macrocracks (e.g., splitting cracks), and a reduction in the contact area.  The
next section will first focus upon the local elastic effects of reducing the contact area independent
of the “material damage.”  Subsequently the effect of local crushing upon the contact area will be
represented using a simple model that accounts for the deposition of crushed concrete upon the
rib faces.

ANALYTICAL MODEL FOR REDUCED CONTACT EFFECTS
A few simplifications are adopted to obtain an analytical solution for the effects of reduced

contact.  The actual problem might have a geometry as depicted in Fig. 2[c].  A cylindrical
idealization of the interface geometry is adopted, and the actual tractions are projected onto the
cylindrical surface, accounting for the change in area.  Unlike the bar-scale model this
idealization does not “smooth out” the interface tractions.  Furthermore, it is assumed: (1) that σ
is uniform, and (2) that the corresponding actual tractions vary periodically over each unit surface
element (sr) and are symmetrically distributed about the center of each unit surface element.
Boundary conditions are assumed such that the model can address the behavior of a single unit
cell of a cylindrical domain as depicted in Fig. 5[a], and the elastic properties of the concrete are
assumed to be homogeneous and isotropic.

The definition of the radial elastic modulus follows from the definition of equivalence between
the idealized “rib-scale problem” (Fig. 5[a]) and the corresponding “bar-scale” idealization (Fig.
5[c]).  Common to all bar-scale models the traction distributions are assumed to be “statically
equivalent.”  Since the actual traction distribution is unknown it is convenient to define an
equivalent problem in which the traction is uniform over an equivalent contact length (Fig. 5[b]).
The tractions are related by

tNdz

− sr 2

sr 2

∫ = ˜ t N ˜ L t = σsr (7)

where ˜ t N  and Lt are the equivalent traction and contact length, respectively.  The equivalent
traction and contact length are not uniquely defined by static equivalence alone, nor is the radial
elastic modulus, so another requirement is needed.  Since the elastic strain energy stored in the
concrete is available for driving longitudinal cracks, the additional requirement for “problem
equivalence” is defined as: two “equivalent problems” will store the same amounts of elastic
strain energy.  For a particular traction distribution (tN), the quantities ˜ t N , Lt and D22

e  can be
uniquely determined by equating the strain energy stored in each of the respective problems.
Solution of the problem depicted in Fig. 5[a] was previously presented by Cox and Yu (2000).  A
brief description of the analytical solution is presented below merely to establish key
nomenclature.  Additional detail is available in Appendix I, or in Cox and Yu (2000).

Description of analytical solution
The governing equations of linear isotropic elasticity were solved by expressing the nonzero

displacement components as

ur r,z  = νrn r Φcn z•
n=0

∞

, uz r,z  = νzn r Φsn z•
n=1

∞

(8a,b)

where
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Φcn z  = 
1
sr

, n=0

cos zωn

sr/2
, n>0

, Φsn z  = 
sin zωn

sr/2
, ωn = 2πn

sr
(8c-e)

The coefficient functions are given by
νrn r( ) = ur r, z( ),Φcn z( ) , ν zn r( ) = uz r,z( ),Φsn z( ) (9a,b)

where a,b ≡ abdz
− sr 2

sr 2

∫ .  Solution of the governing equations gave expressions for the

coefficient functions for the displacement components in terms of modified Bessel functions.
Expressions for the stresses could also be obtained in terms of {Φc} and {Φs} (Eqs. 8c-e).
Traction boundary conditions on the inner and outer surfaces could be used to solve for unknown
constants and to do so required the load to be expressed in terms of the normalized cosine
functions as

tN z( ) = αn
n =0

∞

∑ Φcn z( )  (10a)

where the α’s are given by
αn = Φcn z( ),tN z( ) (10b)

The exact solution can be expressed analytically, but the expressions are lengthy and thus are
omitted for brevity.

The n=0 term of the solution corresponds to the uniform traction case (i.e., σ), thus the
remaining terms characterize the difference in response in problems a and c (omitting the
contribution of the interface).  This is illustrated by an example that was previously used to verify
the correctness of the analytical solution.  A unit cell of the bond specimen of Malvar (1992) is
examined: ri = 9.525 mm, ro =4 ri, Lt=1.587 mm, sr=12.8 mm, E= 38700 MPa and ν=0.17.  The
normal traction is uniform with a magnitude of sr/Lt MPa (i.e.  corresponds to σ= -1 MPa).  Fig.
6 shows a subset of the FE solution for σrr over half of the unit cell due to an applied normal
traction of ˜ t N –σ.  To emphasize that significant differences in the responses of the two problems
are “localized” near the interface, values are only shown when |σrr|>|σ |/100.  By Eq. (7), the
resultant radial force due to ˜ t N –σ is zero, so by Saint-Venant’s principle the “local nature of the
response” is expected.  Note that the solution for the local response was essentially independent
of ro for ro>2ri.

With an analytical solution, the problem of determining the equivalent elastic modulus of the
interface, to characterize this local behavior, can now be addressed.  The result shown below is
similar to that derived by Cox and Yu 2000, but in this study the elastic modulus relates σ to the
generalized strains of the bond model.  (A more detailed overview is available in Appendix II.)

Equivalent elastic modulus
We previously defined equivalent problems as those that store the same amount of elastic

strain energy and have “statically equivalent” traction distributions.  The strain energy stored in
an elastic unit cell is equal to the work done by the traction tN.  Therefore, the approach is to
simply use the analytical solution to compute the work done by the interface tractions in
problems a and c, and then equate the works to determine an expression for D22

e .  The elastic
modulus can be written as
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D22
e = 2Ec

−
αn

α0

 

 
  

 
 

2

h ωnri ,ri ro ,ν( )
n=1

∞

∑
(11)

where νrn(ri) is expressed in the symbolic form

νrn ri( )=
α nrih ωnri ,ri ro ,ν( )

Ec

(12)

and h is a dimensionless function.
Assume that the rib geometry scales with db, which is approximately true for standard steel

bars.  Furthermore, assume that (for a given load level) the scaling of the rib geometry will scale
the traction distribution accordingly.  Then both αn/α0 and ωnri are independent of db.  If ro >2ri,
then D22

e  is essentially independent of db, and the dependence of the elastic response upon db is
given by the definition of the generalized elastic strains (Eq. 1) – originally motivated by the
characterization of bond test data (Morita and Fujii 1985).  As expected the elastic modulus
varies proportionately with Young’s modulus.  Variation of the elastic modulus with Poisson’s
ratio (over a representative range) was shown to be negligible (Cox and Yu 2000).

The denominator of Eq. (11) gives a direct measure of the effect of having a nonuniform
traction distribution.  As previously noted, the zero term of Eq. (8a) gives the displacements of
the unit cell for a uniform traction distribution.  All of the other terms in the series expansions
account for the deviation from a uniform distribution, are “statically equivalent to a zero
traction,” and thus in combination (in a Saint-Venant sense) represent the local response.

As previously discussed there is significant motivation for including the effects of contact in
the elastic response even though there also are several uncertainties.  The paper will briefly
consider two factors related to the contact between the ribs and the concrete: contact length and
traction distribution.

Fig. 7 shows the variation of the elastic modulus with respect to contact length and for two
different traction distributions over Lt (uniform and cosine).  Over the contact length, the cosine
distribution is given by t(z)=tmaxcos(zπ/Lt), where tmax denotes the maximum traction value.  The
properties correspond to a unit cell of the Malvar (1992) bond specimen.  These analytical results
support the postulate that the stiffness of the interface should decrease with a reduction in the
contact length.  The results also indicate that the effect of the traction distribution increases with
the contact length.  As previously noted, since both the contact length and traction distribution
are unknown it may be simpler to consider an equivalent system with a constant traction
distribution over the contact length.  Equivalent systems will store the same amounts of elastic
strain energy, and thus will have the same elastic modulus.  As an example (see the “box” on Fig.
7), a cosine distribution with a contact length of sr/2 will have an equivalent contact length of
about 0.38sr, which is intuitively consistent with the cosine distribution being more concentrated
(for a fixed Lt) than a constant distribution associated with the same “radial force.”

For the uniform traction distribution over the contact length, D22
e →∞ as Lt→sr , since problems

b and c are the same under these conditions.  In contrast, for the cosine traction distribution D22
e

approaches a finite value for full-contact conditions.  That is, even if full contact exists along the
interface any “smoothing” of a nonuniform traction distribution requires a finite elastic modulus
for the interface if the two systems are to store the same amount of elastic strain energy.

EFFECT OF ELASTIC MODULUS ON LONGITUDINAL CRACKING
The definition of D22

e  was motivated by the need to predict splitting failures when using bar-
scale models.  The effects of longitudinal cracking in the concrete cover upon the bond response
are commonly idealized by thick-walled cylinder models that approximate the effects of
longitudinal cracking in the context of an axisymmetric analysis.  Tepfers (1979) initially
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considered a concentric cylinder model in which the hoop stress in the concrete was released
upon reaching its tensile strength.  Several other models have been proposed that adopt a
fictitious crack model (Hillerborg et al. 1976) to account for the fracture energy of the
longitudinal cracks.  Noghabai (1995) gives a detailed review of these types of models.  In all
cases, a uniform internal pressure is assumed to act upon the concrete cylinder.  An axisymmetric
idealization is adopted in this study that uses the general approach of Rots (1988) to account for
the longitudinal cracking in a FE model.  Each crack is idealized as being planar with a process
zone of infinitesimal thickness and finite length. The crack opening contributes to the apparent
hoop strain and the material between cracks is treated as linear elastic. The behavior of the
process zone is characterized by the following traction–crack opening relationship (Reinhardt et
al. 1986)

σcr

f
t

= 1+ C1 ˆ w 3( )exp −C2 ˆ w ( )− 1 + C1( )exp −C2( ) (13)

where ˆ w  is the ratio of the opening displacement of the cohesive crack and the critical crack
opening, wo  –the minimum crack opening for which there is no traction across the crack, ft is the
tensile strength of the concrete, and C1 and C2 are model parameters.  For the examples
considered here: C1= 2.146, C2 = 6.93, ft = 4.69 MPa, and wo= 0.16 mm implying the fracture
energy is 100 J/m2.

To examine the effect of this axisymmetric idealization alone, σ versus ur(ri) responses of
axisymmetric models and plane strain models (having evenly spaced cracks) of a unit cell of the
Malvar (1992) bond specimen are compared (Fig. 8).  Fig. 9 shows the results for two, three, and
four cracks.  The results reflect the expected trend that the accuracy of the axisymmetric
idealization increases with the number of cracks.  Depending upon the bond specimen, the
number of longitudinal cracks that reach the surface often varies between two and four.  While
the axisymmetric idealization has limitations, it still serves as an acceptable model in which to
examine the effects of the contact conditions.

The derivation of D22
e  was based upon linear elastic behavior.  Now consider how effective Eq.

(11) is at quantifying the added compliance associated with a reduced contact area when
longitudinal cracking occurs.  Again a unit cell of the Malvar bond specimen is adopted for
demonstration.  Fig. 10 shows σ versus the average work conjugate radial displacement for the
case of two, three, and four longitudinal cracks.  In each case, the response for a uniform traction
without additional interface compliance (i.e., ˜ L =sr) is given for reference, and contact lengths

corresponding to the length of the rib face (sr/Lt ≈1/8) and sr/2 are also shown.  For the reduced
contact cases two results are shown: (1) a FE solution explicitly modeling the reduced contact
(problem b), and (2) a FE solution that incorporates an interface stiffness determined from Eq.
(11) (problem c).  In each case, the two analysis results are almost identical, indicating that D22

e

effectively represents the effect of reduced contact area even at load levels that split the concrete
cylinder.

The results also reflect a significant variation in radial displacement with contact length.  For
smaller effective contact lengths, the radial displacement required to split the concrete cylinder is
significantly more than that given by a uniform traction.  The potential importance of this result
is that the radial displacement shown in these plots corresponds to the inelastic normal
displacement of a bond model (e.g.,δ2

p ), thus the prediction of splitting failure can be
significantly affected by the contact conditions.  Unfortunately contact conditions are likely to
vary during loading and experimental data on the contact state is lacking.  To model the effects of
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changing contact conditions, the elastic component of the bond model was recently modified but
an analytical basis for this modification (partially presented in the previous sections) had not
been developed.  The next section first presents the new form of the elastic component of the bar-
scale bond model.  Then a simple rib-scale model, used to estimate the effect of local crushing
upon the contact length, and selected experimental results were used to relate the bond model to
estimates of the contact length.

RELATING CONTACT EFFECTS TO THE BOND MODEL
The key idea that motivated the analytical work of the earlier sections was that D22

e  should
decrease with a decrease in contact area.  For the bond model, it was postulated that the contact
area would decrease with an increase in q2

p  (=δ2
p /db), so a strain energy function, quadratic in the

elastic strains, was selected so that the generalized stresses are given by
Q = D

e q2
p( )qe

(14)
For simplicity, since the off-diagonal moduli were very small, only the diagonal moduli are
retained.  The elastic response is now coupled to the plastic response (elastoplastic coupling), but
initially this coupling is considered for the radial component alone, i.e.,

De q2
p( )= diag D11

e , D22
3 q2

p( )( )  (15)
A simple affine relationship was adopted between the elastic compliance modulus for the radial
response and q2

p
, i.e.,

D22
e

Ec

 

 
  

 
 

−1

= k1 + k2 q2
p( )  (16)

where k1 and k2 were calibration parameters.
Relating Eq. (16) to the previous analytical results will indicate the adequacy of this simple

model and potentially allow k1 and k2 to be determined from the analytical solution and
experimental data.  To apply the analytical solution requires the contact length (Lt – a “rib-scale
quantity”) to be related to the radial plastic strain (q2

p
 – a “bar-scale quantity”).  Change in the

contact length is a direct result of deformation, and for steel bars that have not yielded, most of
this deformation is associated with failure of the concrete.  While q2

p  conceptually includes the
effects of inelastic deformations of the concrete, the effects of concrete deformation considered
in the following development are limited to the recognition that a wedge of damaged concrete
has been found to accumulate on the face of the rib (e.g., Lutz and Gergely 1967).  The
experimental data of Fig. 3 shows that (1) most of the radial dilation occurs near the failure state
(τmax in this case), and (2) the radial dilation (for bars with normal ribs) remains almost constant
during much of the bond stress softening response.  The maximum dilation is critical to
predicting the splitting response so the simple model discussed below is only used to relate Lt to
q2

p at the state when the maximum radial dilation first occurs.

Contact length estimate
A simple rib-scale model for relating Lt to q2

p is adopted that includes a concrete wedge in front
of the rib.  The geometry is depicted in Fig. 11.  The surface of the concrete wedge will be
referred to as the actual interface surface in the following description.  From geometry

pr = hr tanφ (17a)
δ2

p = hr − Lt tanφ (17b)
where pr is the projected length of the actual surface area onto the cylindrical core of the bar, and
φ is the angle of inclination of the actual interface surface with respect to the axis of the bar.
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Except for the existence of the concrete wedge, the depicted geometric model ignores the local
deformation of the concrete and thus is only valid if δ2

e << δ2
p .*

The interface tractions resulting from the mechanical interaction between the concrete and ribs
have so far been idealized in two ways: smoothed (or homogenized) over the unit surface
element (Fig. 2[b]), and projected onto a cylindrical idealization of the bar surface (Fig. 5).  The
traction components on the actual interface of the concrete (σw  and τw ) are schematically
depicted in Fig. 12[a] in a local tangent-normal coordinate system; the alternative description,
used in the previous section, is shown in Fig. 12[b].  (For simplicity uniform traction components
are shown, but a nonuniform distribution will also be considered.)  It is sufficiently accurate for
standard steel bars to assume that q2

p<<1 and hr<<db.  With these assumptions, static equivalence
over a unit surface element of the average (over Lt) actual traction components (σ w  and τ w ) with
the homogenized traction components yields the following relationships

σ w = cosφ σ cosφ −τ sinφ( )sr Lt (18a)
τ w = cosφ σ sinφ + τ cosφ( )sr Lt (18b)

Now consider the stress state of the concrete in the contact region.  One might consider a
multiaxial failure criterion to determine the stress state in the concrete, but there are several
obstacles to this approach: (1) the actual tractions are unknown, (2) other stress components are
unknown, (3) material properties near the bar are unknown (e.g., due to aggregate packing) and
vary spatially, and (4) common macroscopic failure criterion for concrete are not directly
applicable at this scale.  For the states where the maximum dilation first occurs we assume that
Coulomb friction can be used to relate σ w  and τ w  and that σ w  reaches a maximum magnitude at
this state.  The friction condition governing slip along the actual interface is given by

τ w ≤ µ −σ w( ) (19)
where µ is the coefficient of friction.  Note that this relationship has been commonly used in rib-
scale analyses to relate the interface traction components at each point (e.g., Tholen and Darwin
1996).

Because of the previously noted difficulties, a semi-empirical approach is taken to estimate the
maximum magnitude of σ w .  A rib-scale FE model of the Malvar specimen is used to calculate
the value of σ w  on the rib face closest to the loaded end for the various confinement states.  The
value of σ w  corresponding to initial nonlinearity in the bond stress-slip response is assumed to
be the result of local crushing that will contribute to the formation of a concrete wedge on the
face of the rib (e.g., Lutz and Gergely 1967).  Fig. 13 shows one representative result of the three
tests considered.  The nonlinearity occurred approximately when

–σ w = fc
' (20)

Combining the above relationships (Eqs. 17-20) with key experimental data for the three test
results shown in Fig. 3, estimates of the contact length are obtained.  Table 1 gives the empirical
data obtained from the three tests having normal ribs (tests 6, 8, and 10) for the state where the
maximum dilation first occurs; consistent with the above assumption, we let δ2 ≈ δ 2

p
.  The

relevant properties (that were not previously given) are: hr=1.3 mm, pro=1.587 mm, and fc
' =38.4

MPa. Eqs. (17-20) yield six relationships in six unknowns (Lt, pr, φ, τ w , σ w , µ).  Treating µ as an
unknown allows the consistency of the above relations to be examined.  Assuming that both
sliding and crushing occur at the maximum dilation point, Ineq. (19) “becomes an equality.”  The
nonlinear equations can now be analytically solved as follows: (1) Eqs. (17b, 18a, 20) give Lt φ,
andσ w ; Eq. (18b) gives τ w ; Eq. (19) gives µ; and Eq. (17a) gives pr.

                                                
* This assumption was later revisited, by using the calculated D22

e
 to estimate δ 2

e
.  δ 2

p
 of Eq. (17b) was replaced by

δ2 and D22
e

 was recalculated and found to differ by less than 1.5 percent.
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Results
Results are shown in Table 2.  The estimated value of µ is surprisingly consistent for the

simple model and is close to the average experimental values obtained by several researchers:
0.56 (Idun and Darwin 1999), 0.53 (Cairns and Abdullah 1994), and 0.57 (Rabbat and Russell
1985).

If µ is now taken to be 0.55 and δ2
p is treated as an unknown, the predicted values for the

maximum δ2
p  shown in Table 3 are reasonably accurate.  Using these calculated values of Lt, the

compliances are determined from Eq. (11), or obtained graphically from Fig. 7.  The compliance
values given in Table 3 correspond to cosine traction distributions.  Note that the predicted
variation in the compliance is one order of magnitude.

The last step is to relate the variation in compliance to the simpler model function, Eq. (16).
Fig. 14 shows the least square fits of the affine model to the data obtained using the analysis
described above; two traction distributions over the contact region are considered – uniform and
cosine.  For both traction distributions, the data obtained with the local model is fit accurately by
a line and the slope of the line (k2) is not strongly dependent upon the traction distribution.  The
model for the uniform distribution is not physically meaningful for very small q2

p, since it
predicts a nonpositive definite elastic response.  For this study, the model based on the cosine
distribution is adopted; the calibration parameters are k1=0.034 and k2=27.

Accounting for a change in the radial elastic stiffness of the interface, the bond model gives the
results shown in Figs. 15 and 16, for the Malvar and Shima et al. tests, respectively.  Comparison
of Figs. 3 and 15 shows the radial response of the model is significantly improved.  The main
objective was for the model to reproduce the general behavior with acceptable maximum
dilations.  Further refinement of the model or its calibration would require a measure of the
experimental scatter.  Fig. 16 compares the original model’s response to that of the model with
varying elastic properties.  The model now predicts that the clamping action towards the free end
of the bar produces a lack of dilation rather than a penetration.

SUMMARY AND CONCLUSIONS
For an interface idealization of bond behavior the effective radial elastic modulus of the

interface can be associated with local elastic deformation resulting from the mechanical
interlocking between the ribs of a bar and the adjacent concrete.  The key premise in obtaining
the analytical expression for the elastic modulus was that “equivalent traction distributions”
should produce the same amount of elastic strain energy in the constituent materials.  While the
analytical solution required several simplifying assumptions, it provides information on an elastic
modulus for which there is apparently no experimental data.  If one associates the change in
traction distribution with contact between the bar and concrete, the analytical solution shows the
interface stiffness should increase with the contact length.  Numerical results indicate that the
analytical solution for D22

e  also can characterize the elastic effects of reduced contact for radial
forces that are large enough to split the concrete.

Through a simple model that accounts for the accumulation of a concrete wedge on a rib face
and key experimental data, contact lengths were estimated and related to an interface description
of bond for states in which the “splitting force” has its maximum effect (i.e., when the radial
dilation is at a maximum).  The predicted coefficients of friction were quantitatively consistent
with existing experimental results, and the accumulation of concrete on the rib face (increasing
with confinement stress) was consistent with experimental observations.

There are several issues that may merit further investigation.  The effects of heterogeneous
material properties (including the effects of micro-cracking) upon D22

e  have not been quantified.
The semi-empirical approach to quantifying the local crushing failure is simple, but there are
several factors that discourage a more rigorous treatment at this scale (including unknown
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traction distributions and heterogeneous material properties).  Further more, application of the
model to bars with non-normal ribs can only be justified in a qualitative sense.

Significant improvements in the predicted radial response of a bond model were obtained by
modeling the effect of changes in the estimated contact area upon the radial elastic response.
Axisymmetric models of the Malvar specimen predicted the radial dilation with good accuracy,
and the erroneous prediction of interface contraction with the Shima et al. specimen was
eliminated.  Improvements in the radial response of this type of model increases the potential of
applying them to predict the behavior of structural components in which splitting and pullout
failures could occur.
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Footnotes

Several validation results were presented by Cox and Herrmann (1998), but this paper only
examines the two results that suggested the radial elastic response needed further
investigation.

This assumption was later revisited, by using the calculated D22
e  to estimate δ 2

e .  δ 2
p  of Eq. (17b)

was replaced by δ2 and D22
e  was recalculated and found to differ by less than 1.5 percent.
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Tables for the paper:
"Modeling the radial elastic stiffness associated with

the bond between steel bars and concrete"

by James V. Cox and Hailing Yu, Members ASCE

Table 1—Experimental data

Table 2—“Contact Model” Results (µ unknown)

Table 3—Elastic Modulus Predictions (µ=0.55)
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Table 1—Experimental data

δ2
p(mm) σ(MPa τ(MPa)

Test
6

0.512 -3.45 5

Test
8

0.135 -17.2 14

Test
10

0.029 -31 22

Table 2—“Contact Model” Results (µ unknown)

φ(de
g)

pr (mm) Lt (mm σ w (MPa τ w (MPa µ =
τ w σ w

Test
6

26.4 2.62 1.59 -38.4 21.3 0.554

Test
8

10.4 7.11 6.37 -38.4 21.1 0.549

Test
10

6.57 11.3 11.0 -38.4 21.1 0.550

Table 3—Elastic Modulus Predictions (µ=0.55)

Lt (mm δ2
p(mm)

δ2
p − δ2

p
exp

δ2
p
exp

q2
p = δ2

p D Ec D22
e

Test
6

1.59 0.506 1.2% 0.0265 0.758

Test
8

6.37 0.138 2.3% 0.00724 0.240

Test
10

11.0 0.033
2

14.5% 0.00174 0.075
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Figures for the paper:
"Modeling the radial elastic stiffness associated with

the bond between steel bars and concrete"

by James V. Cox and Hailing Yu, Members ASCE

Fig. 1—Two scales of bond analysis

Fig. 2—Bond model interface idealizations

Fig. 3—Average bond stress vs. radial dilation: a comparison of the original model to the data of

Malvar (1992): o ~ rib angle of 90 degrees, and ×× ~ rib angle of 68 degrees

Fig. 4—Radial dilation vs. position: predictions of the original model for the Shima et al. (1987)

specimen

Fig. 5—Idealizations for the radial response

Fig. 6—FE prediction of difference in srr due to two equivalent traction distributions

Fig. 7—Variation of the elastic modulus with contact length

Fig. 8—Plane strain and axisymmetric FE models for Malvar specimen

Fig. 9—Responses of the plane strain and axisymmetric models

Fig. 10—Interface compression vs. radial dilation for Malvar unit cell

Fig. 11—Kinematic model relating contact length to plastic dilation

Fig. 12—Two descriptions of the actual interface tractions

Fig. 13—Compressive failure in Malvar Test 9

Fig. 14—Models for elastic modulus as a function of plastic dilation

Fig. 15—Average bond stress vs. Radial dilation: a comparison of the new model to the data of

Malvar (1992): o ~ rib angle of 90 degrees, and ×× ~ rib angle of 68 degrees
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Fig. 16—Radial dilation vs. position: predictions of the models for the Shima et al. (1987)

specimen
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Fig. 5—Idealizations for the radial response
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Fig. 6—FE prediction of difference in σrr due to two equivalent traction distributions
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Fig. 8—Plane strain and axisymmetric FE models for Malvar specimen
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